/[gxemul]/trunk/src/cpus/cpu_alpha_instr.c
This is repository of my old source code which isn't updated any more. Go to git.rot13.org for current projects!
ViewVC logotype

Contents of /trunk/src/cpus/cpu_alpha_instr.c

Parent Directory Parent Directory | Revision Log Revision Log


Revision 22 - (show annotations)
Mon Oct 8 16:19:37 2007 UTC (16 years, 5 months ago) by dpavlin
File MIME type: text/plain
File size: 33790 byte(s)
++ trunk/HISTORY	(local)
$Id: HISTORY,v 1.1121 2006/02/18 21:03:08 debug Exp $
20051126	Cobalt and PReP now work with the 21143 NIC.
		Continuing on Alpha dyntrans things.
		Fixing some more left-shift-by-24 to unsigned.
20051127	Working on OpenFirmware emulation; major cleanup/redesign.
		Progress on MacPPC emulation: NetBSD detects two CPUs (when
		running with -n 2), framebuffer output (for text) works.
		Adding quick-hack Bandit PCI controller and "gc" interrupt
		controller for MacPPC.
20051128	Changing from a Bandit to a Uni-North controller for macppc.
		Continuing on OpenFirmware and MacPPC emulation in general
		(obio controller, and wdc attached to the obio seems to work).
20051129	More work on MacPPC emulation (adding a dummy ADB controller).
		Continuing the PCI bus cleanup (endianness and tag composition)
		and rewriting all PCI controllers' access functions.
20051130	Various minor PPC dyntrans optimizations.
		Manually inlining some parts of the framebuffer redraw routine.
		Slowly beginning the conversion of the old MIPS emulation into
		dyntrans (but this will take quite some time to get right).
		Generalizing quick_pc_to_pointers.
20051201	Documentation update (David Muse has made available a kernel
		which simplifies Debian/DECstation installation).
		Continuing on the ADB bus controller.
20051202	Beginning a rewrite of the Zilog serial controller (dev_zs).
20051203	Continuing on the zs rewrite (now called dev_z8530); conversion
		to devinit style.
		Reworking some of the input-only vs output-only vs input-output
		details of src/console.c, better warning messages, and adding
		a debug dump.
		Removing the concept of "device state"; it wasn't really used.
		Changing some debug output (-vv should now be used to show all
		details about devices and busses; not shown during normal
		startup anymore).
		Beginning on some SPARC instruction disassembly support.
20051204	Minor PPC updates (WALNUT skeleton stuff).
		Continuing on the MIPS dyntrans rewrite.
		More progress on the ADB controller (a keyboard is "detected"
		by NetBSD and OpenBSD).
		Downgrading OpenBSD/arc as a guest OS from "working" to
		"almost working" in the documentation.
		Progress on Algor emulation ("v3" PCI controller).
20051205	Minor updates.
20051207	Sorting devices according to address; this reduces complexity
		of device lookups from O(n) to O(log n) in memory_rw (but no
		real performance increase (yet) in experiments).
20051210	Beginning the work on native dyntrans backends (by making a
		simple skeleton; so far only for Alpha hosts).
20051211	Some very minor SPARC updates.
20051215	Fixing a bug in the MIPS mul (note: not mult) instruction,
		so it also works with non-64-bit emulation. (Thanks to Alec
		Voropay for noticing the problem.)
20051216	More work on the fake/empty/simple/skeleton/whatever backend;
		performance doesn't increase, so this isn't really worth it,
		but it was probably worth it to prepare for a real backend
		later.
20051219	More instr call statistics gathering and analysis stuff.
20051220	Another fix for MIPS 'mul'. Also converting mul and {d,}cl{o,z}
		to dyntrans.
		memory_ppc.c syntax error fix (noticed by Peter Valchev).
		Beginning to move out machines from src/machine.c into
		individual files in src/machines (in a way similar to the
		autodev system for devices).
20051222	Updating the documentation regarding NetBSD/pmax 3.0.
20051223	- " - NetBSD/cats 3.0.
20051225	- " - NetBSD/hpcmips 3.0.
20051226	Continuing on the machine registry redesign.
		Adding support for ARM rrx (33-bit rotate).
		Fixing some signed/unsigned issues (exposed by gcc -W).
20051227	Fixing the bug which prevented a NetBSD/prep 3.0 install kernel
		from starting (triggered when an mtmsr was the last instruction
		on a page). Unfortunately not enough to get the kernel to run
		as well as the 2.1 kernels did.
20051230	Some dyntrans refactoring.
20051231	Continuing on the machine registry redesign.
20060101-10	Continuing... moving more machines. Moving MD interrupt stuff
		from machine.c into a new src/machines/interrupts.c.
20060114	Adding various mvmeppc machine skeletons.
20060115	Continuing on mvme* stuff. NetBSD/mvmeppc prints boot messages
		(for MVME1600) and reaches the root device prompt, but no
		specific hardware devices are emulated yet.
20060116	Minor updates to the mvme1600 emulation mode; the Eagle PCI bus
		seems to work without much modification, and a 21143 can be
		detected, interrupts might work (but untested so far).
		Adding a fake MK48Txx (mkclock) device, for NetBSD/mvmeppc.
20060121	Adding an aux control register for ARM. (A BIG thank you to
		Olivier Houchard for tracking down this bug.)
20060122	Adding more ARM instructions (smulXY), and dev_iq80321_7seg.
20060124	Adding disassembly of more ARM instructions (mia*, mra/mar),
		and some semi-bogus XScale and i80321 registers.
20060201-02	Various minor updates. Moving the last machines out of
		machine.c.
20060204	Adding a -c command line option, for running debugger commands
		before the simulation starts, but after all files have been
		loaded.
		Minor iq80321-related updates.
20060209	Minor hacks (DEVINIT macro, etc).
		Preparing for the generalization of the 64-bit dyntrans address
		translation subsystem.
20060216	Adding ARM ldrd (double-register load).
20060217	Continuing on various ARM-related stuff.
20060218	More progress on the ATA/wdc emulation for NetBSD/iq80321.
		NetBSD/evbarm can now be installed :-)  Updating the docs, etc.
		Continuing on Algor emulation.

==============  RELEASE 0.3.8  ==============


1 /*
2 * Copyright (C) 2005-2006 Anders Gavare. All rights reserved.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions are met:
6 *
7 * 1. Redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer.
9 * 2. Redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution.
12 * 3. The name of the author may not be used to endorse or promote products
13 * derived from this software without specific prior written permission.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 *
27 *
28 * $Id: cpu_alpha_instr.c,v 1.7 2006/02/09 22:40:27 debug Exp $
29 *
30 * Alpha instructions.
31 *
32 * Individual functions should keep track of cpu->n_translated_instrs.
33 * (If no instruction was executed, then it should be decreased. If, say, 4
34 * instructions were combined into one function and executed, then it should
35 * be increased by 3.)
36 */
37
38
39 #include "float_emul.h"
40
41
42 /*
43 * nop: Do nothing.
44 */
45 X(nop)
46 {
47 }
48
49
50 /*
51 * call_pal: PALcode call
52 *
53 * arg[0] = pal nr
54 */
55 X(call_pal)
56 {
57 /* Synchronize PC first: */
58 uint64_t old_pc, low_pc = ((size_t)ic - (size_t)
59 cpu->cd.alpha.cur_ic_page) / sizeof(struct alpha_instr_call);
60 cpu->pc &= ~((ALPHA_IC_ENTRIES_PER_PAGE-1) <<
61 ALPHA_INSTR_ALIGNMENT_SHIFT);
62 cpu->pc += (low_pc << ALPHA_INSTR_ALIGNMENT_SHIFT);
63 old_pc = cpu->pc;
64
65 alpha_palcode(cpu, ic->arg[0]);
66
67 if (!cpu->running) {
68 cpu->running_translated = 0;
69 cpu->n_translated_instrs --;
70 cpu->cd.alpha.next_ic = &nothing_call;
71 } else if (cpu->pc != old_pc) {
72 /* The PC value was changed by the palcode call. */
73 /* Find the new physical page and update the translation
74 pointers: */
75 alpha_pc_to_pointers(cpu);
76 }
77 }
78
79
80 /*
81 * jsr: Jump to SubRoutine
82 *
83 * arg[0] = ptr to uint64_t where to store return PC
84 * arg[1] = ptr to uint64_t of new PC
85 */
86 X(jsr)
87 {
88 uint64_t old_pc = cpu->pc, low_pc;
89 uint64_t mask_within_page = ((ALPHA_IC_ENTRIES_PER_PAGE-1)
90 << ALPHA_INSTR_ALIGNMENT_SHIFT) |
91 ((1 << ALPHA_INSTR_ALIGNMENT_SHIFT) - 1);
92
93 low_pc = ((size_t)ic - (size_t)
94 cpu->cd.alpha.cur_ic_page) / sizeof(struct alpha_instr_call);
95 cpu->pc &= ~((ALPHA_IC_ENTRIES_PER_PAGE-1)
96 << ALPHA_INSTR_ALIGNMENT_SHIFT);
97 cpu->pc += (low_pc << ALPHA_INSTR_ALIGNMENT_SHIFT) + 4;
98
99 *((int64_t *)ic->arg[0]) = cpu->pc;
100 cpu->pc = *((int64_t *)ic->arg[1]);
101
102 /*
103 * If this is a jump/return into the same code page as we were
104 * already in, then just set cpu->cd.alpha.next_ic.
105 */
106 if ((old_pc & ~mask_within_page) == (cpu->pc & ~mask_within_page)) {
107 cpu->cd.alpha.next_ic = cpu->cd.alpha.cur_ic_page +
108 ((cpu->pc & mask_within_page) >> 2);
109 } else {
110 /* Find the new physical page and update pointers: */
111 alpha_pc_to_pointers(cpu);
112 }
113 }
114
115
116 /*
117 * jsr_trace: Jump to SubRoutine (with function call trace enabled)
118 *
119 * Arguments same as for jsr.
120 */
121 X(jsr_trace)
122 {
123 cpu_functioncall_trace(cpu, *((int64_t *)ic->arg[1]));
124 instr(jsr)(cpu, ic);
125 }
126
127
128 /*
129 * jsr_0: JSR/RET, don't store return PC.
130 *
131 * arg[0] = ignored
132 * arg[1] = ptr to uint64_t of new PC
133 */
134 X(jsr_0)
135 {
136 uint64_t old_pc = cpu->pc;
137 uint64_t mask_within_page = ((ALPHA_IC_ENTRIES_PER_PAGE-1)
138 << ALPHA_INSTR_ALIGNMENT_SHIFT)
139 | ((1 << ALPHA_INSTR_ALIGNMENT_SHIFT) - 1);
140
141 cpu->pc = *((int64_t *)ic->arg[1]);
142
143 /*
144 * If this is a jump/return into the same code page as we were
145 * already in, then just set cpu->cd.alpha.next_ic.
146 */
147 if ((old_pc & ~mask_within_page) == (cpu->pc & ~mask_within_page)) {
148 cpu->cd.alpha.next_ic = cpu->cd.alpha.cur_ic_page +
149 ((cpu->pc & mask_within_page) >> 2);
150 } else {
151 /* Find the new physical page and update pointers: */
152 alpha_pc_to_pointers(cpu);
153 }
154 }
155
156
157 /*
158 * jsr_0_trace: JSR/RET (with function call trace enabled)
159 *
160 * Arguments same as for jsr_0.
161 */
162 X(jsr_0_trace)
163 {
164 cpu_functioncall_trace_return(cpu);
165 instr(jsr_0)(cpu, ic);
166 }
167
168
169 /*
170 * br: Branch (to a different translated page)
171 *
172 * arg[0] = relative offset (as an int32_t)
173 */
174 X(br)
175 {
176 uint64_t low_pc;
177
178 /* Calculate new PC from this instruction + arg[0] */
179 low_pc = ((size_t)ic - (size_t)
180 cpu->cd.alpha.cur_ic_page) / sizeof(struct alpha_instr_call);
181 cpu->pc &= ~((ALPHA_IC_ENTRIES_PER_PAGE-1)
182 << ALPHA_INSTR_ALIGNMENT_SHIFT);
183 cpu->pc += (low_pc << ALPHA_INSTR_ALIGNMENT_SHIFT);
184 cpu->pc += (int32_t)ic->arg[0];
185
186 /* Find the new physical page and update the translation pointers: */
187 alpha_pc_to_pointers(cpu);
188 }
189
190
191 /*
192 * br: Branch (to a different translated page), write return address
193 *
194 * arg[0] = relative offset (as an int32_t)
195 * arg[1] = pointer to uint64_t where to write return address
196 */
197 X(br_return)
198 {
199 uint64_t low_pc;
200
201 /* Calculate new PC from this instruction + arg[0] */
202 low_pc = ((size_t)ic - (size_t)
203 cpu->cd.alpha.cur_ic_page) / sizeof(struct alpha_instr_call);
204 cpu->pc &= ~((ALPHA_IC_ENTRIES_PER_PAGE-1)
205 << ALPHA_INSTR_ALIGNMENT_SHIFT);
206 cpu->pc += (low_pc << ALPHA_INSTR_ALIGNMENT_SHIFT);
207
208 /* ... but first, save away the return address: */
209 *((int64_t *)ic->arg[1]) = cpu->pc + 4;
210
211 cpu->pc += (int32_t)ic->arg[0];
212
213 /* Find the new physical page and update the translation pointers: */
214 alpha_pc_to_pointers(cpu);
215 }
216
217
218 /*
219 * beq: Branch (to a different translated page) if Equal
220 *
221 * arg[0] = relative offset (as an int32_t)
222 * arg[1] = pointer to int64_t register
223 */
224 X(beq)
225 {
226 if (*((int64_t *)ic->arg[1]) == 0)
227 instr(br)(cpu, ic);
228 }
229
230
231 /*
232 * blbs: Branch (to a different translated page) if Low Bit Set
233 *
234 * arg[0] = relative offset (as an int32_t)
235 * arg[1] = pointer to int64_t register
236 */
237 X(blbs)
238 {
239 if (*((int64_t *)ic->arg[1]) & 1)
240 instr(br)(cpu, ic);
241 }
242
243
244 /*
245 * blbc: Branch (to a different translated page) if Low Bit Clear
246 *
247 * arg[0] = relative offset (as an int32_t)
248 * arg[1] = pointer to int64_t register
249 */
250 X(blbc)
251 {
252 if (!(*((int64_t *)ic->arg[1]) & 1))
253 instr(br)(cpu, ic);
254 }
255
256
257 /*
258 * bne: Branch (to a different translated page) if Not Equal
259 *
260 * arg[0] = relative offset (as an int32_t)
261 * arg[1] = pointer to int64_t register
262 */
263 X(bne)
264 {
265 if (*((int64_t *)ic->arg[1]) != 0)
266 instr(br)(cpu, ic);
267 }
268
269
270 /*
271 * ble: Branch (to a different translated page) if Less or Equal
272 *
273 * arg[0] = relative offset (as an int32_t)
274 * arg[1] = pointer to int64_t register
275 */
276 X(ble)
277 {
278 if (*((int64_t *)ic->arg[1]) <= 0)
279 instr(br)(cpu, ic);
280 }
281
282
283 /*
284 * blt: Branch (to a different translated page) if Less Than
285 *
286 * arg[0] = relative offset (as an int32_t)
287 * arg[1] = pointer to int64_t register
288 */
289 X(blt)
290 {
291 if (*((int64_t *)ic->arg[1]) < 0)
292 instr(br)(cpu, ic);
293 }
294
295
296 /*
297 * bge: Branch (to a different translated page) if Greater or Equal
298 *
299 * arg[0] = relative offset (as an int32_t)
300 * arg[1] = pointer to int64_t register
301 */
302 X(bge)
303 {
304 if (*((int64_t *)ic->arg[1]) >= 0)
305 instr(br)(cpu, ic);
306 }
307
308
309 /*
310 * bgt: Branch (to a different translated page) if Greater Than
311 *
312 * arg[0] = relative offset (as an int32_t)
313 * arg[1] = pointer to int64_t register
314 */
315 X(bgt)
316 {
317 if (*((int64_t *)ic->arg[1]) > 0)
318 instr(br)(cpu, ic);
319 }
320
321
322 /*
323 * br_samepage: Branch (to within the same translated page)
324 *
325 * arg[0] = pointer to new alpha_instr_call
326 */
327 X(br_samepage)
328 {
329 cpu->cd.alpha.next_ic = (struct alpha_instr_call *) ic->arg[0];
330 }
331
332
333 /*
334 * br_return_samepage: Branch (to within the same translated page),
335 * and save return address
336 *
337 * arg[0] = pointer to new alpha_instr_call
338 * arg[1] = pointer to uint64_t where to store return address
339 */
340 X(br_return_samepage)
341 {
342 uint64_t low_pc;
343
344 low_pc = ((size_t)ic - (size_t)
345 cpu->cd.alpha.cur_ic_page) / sizeof(struct alpha_instr_call);
346 cpu->pc &= ~((ALPHA_IC_ENTRIES_PER_PAGE-1)
347 << ALPHA_INSTR_ALIGNMENT_SHIFT);
348 cpu->pc += (low_pc << ALPHA_INSTR_ALIGNMENT_SHIFT);
349 *((int64_t *)ic->arg[1]) = cpu->pc + 4;
350
351 cpu->cd.alpha.next_ic = (struct alpha_instr_call *) ic->arg[0];
352 }
353
354
355 /*
356 * beq_samepage: Branch (to within the same translated page) if Equal
357 *
358 * arg[0] = pointer to new alpha_instr_call
359 * arg[1] = pointer to int64_t register
360 */
361 X(beq_samepage)
362 {
363 if (*((int64_t *)ic->arg[1]) == 0)
364 instr(br_samepage)(cpu, ic);
365 }
366
367
368 /*
369 * blbs_samepage: Branch (to within the same translated page) if Low Bit Set
370 *
371 * arg[0] = pointer to new alpha_instr_call
372 * arg[1] = pointer to int64_t register
373 */
374 X(blbs_samepage)
375 {
376 if (*((int64_t *)ic->arg[1]) & 1)
377 instr(br_samepage)(cpu, ic);
378 }
379
380
381 /*
382 * blbc_samepage: Branch (to within the same translated page) if Low Bit Clear
383 *
384 * arg[0] = pointer to new alpha_instr_call
385 * arg[1] = pointer to int64_t register
386 */
387 X(blbc_samepage)
388 {
389 if (!(*((int64_t *)ic->arg[1]) & 1))
390 instr(br_samepage)(cpu, ic);
391 }
392
393
394 /*
395 * bne_samepage: Branch (to within the same translated page) if Not Equal
396 *
397 * arg[0] = pointer to new alpha_instr_call
398 * arg[1] = pointer to int64_t register
399 */
400 X(bne_samepage)
401 {
402 if (*((int64_t *)ic->arg[1]) != 0)
403 instr(br_samepage)(cpu, ic);
404 }
405
406
407 /*
408 * ble_samepage: Branch (to within the same translated page) if Less or Equal
409 *
410 * arg[0] = pointer to new alpha_instr_call
411 * arg[1] = pointer to int64_t register
412 */
413 X(ble_samepage)
414 {
415 if (*((int64_t *)ic->arg[1]) <= 0)
416 instr(br_samepage)(cpu, ic);
417 }
418
419
420 /*
421 * blt_samepage: Branch (to within the same translated page) if Less Than
422 *
423 * arg[0] = pointer to new alpha_instr_call
424 * arg[1] = pointer to int64_t register
425 */
426 X(blt_samepage)
427 {
428 if (*((int64_t *)ic->arg[1]) < 0)
429 instr(br_samepage)(cpu, ic);
430 }
431
432
433 /*
434 * bge_samepage: Branch (to within the same translated page)
435 * if Greater or Equal
436 *
437 * arg[0] = pointer to new alpha_instr_call
438 * arg[1] = pointer to int64_t register
439 */
440 X(bge_samepage)
441 {
442 if (*((int64_t *)ic->arg[1]) >= 0)
443 instr(br_samepage)(cpu, ic);
444 }
445
446
447 /*
448 * bgt_samepage: Branch (to within the same translated page) if Greater Than
449 *
450 * arg[0] = pointer to new alpha_instr_call
451 * arg[1] = pointer to int64_t register
452 */
453 X(bgt_samepage)
454 {
455 if (*((int64_t *)ic->arg[1]) > 0)
456 instr(br_samepage)(cpu, ic);
457 }
458
459
460 /*
461 * cvttq/c: Convert floating point to quad.
462 *
463 * arg[0] = pointer to rc (destination integer)
464 * arg[2] = pointer to rb (source float)
465 */
466 X(cvttq_c)
467 {
468 struct ieee_float_value fb;
469 ieee_interpret_float_value(reg(ic->arg[2]), &fb, IEEE_FMT_D);
470 reg(ic->arg[0]) = fb.nan? 0 : fb.f;
471 }
472
473
474 /*
475 * cvtqt: Convert quad to floating point.
476 *
477 * arg[0] = pointer to rc (destination float)
478 * arg[2] = pointer to rb (source quad integer)
479 */
480 X(cvtqt)
481 {
482 reg(ic->arg[0]) = ieee_store_float_value(reg(ic->arg[2]),
483 IEEE_FMT_D, 0);
484 }
485
486
487 /*
488 * fabs, fneg: Floating point absolute value, or negation.
489 *
490 * arg[0] = pointer to rc (destination float)
491 * arg[2] = pointer to rb (source quad integer)
492 */
493 X(fabs)
494 {
495 reg(ic->arg[0]) = reg(ic->arg[2]) & 0x7fffffffffffffffULL;
496 }
497 X(fneg)
498 {
499 reg(ic->arg[0]) = reg(ic->arg[2]) ^ 0x8000000000000000ULL;
500 }
501
502
503 /*
504 * addt, subt, mult, divt: Floating point arithmetic.
505 *
506 * arg[0] = pointer to rc (destination)
507 * arg[1] = pointer to ra (source)
508 * arg[2] = pointer to rb (source)
509 */
510 X(addt)
511 {
512 struct ieee_float_value fa, fb;
513 double res;
514 ieee_interpret_float_value(reg(ic->arg[1]), &fa, IEEE_FMT_D);
515 ieee_interpret_float_value(reg(ic->arg[2]), &fb, IEEE_FMT_D);
516 if (fa.nan | fb.nan)
517 res = 0.0;
518 else
519 res = fa.f + fb.f;
520 reg(ic->arg[0]) = ieee_store_float_value(res,
521 IEEE_FMT_D, fa.nan | fb.nan);
522 }
523 X(subt)
524 {
525 struct ieee_float_value fa, fb;
526 double res;
527 ieee_interpret_float_value(reg(ic->arg[1]), &fa, IEEE_FMT_D);
528 ieee_interpret_float_value(reg(ic->arg[2]), &fb, IEEE_FMT_D);
529 if (fa.nan | fb.nan)
530 res = 0.0;
531 else
532 res = fa.f - fb.f;
533 reg(ic->arg[0]) = ieee_store_float_value(res,
534 IEEE_FMT_D, fa.nan | fb.nan);
535 }
536 X(mult)
537 {
538 struct ieee_float_value fa, fb;
539 double res;
540 ieee_interpret_float_value(reg(ic->arg[1]), &fa, IEEE_FMT_D);
541 ieee_interpret_float_value(reg(ic->arg[2]), &fb, IEEE_FMT_D);
542 if (fa.nan | fb.nan)
543 res = 0.0;
544 else
545 res = fa.f * fb.f;
546 reg(ic->arg[0]) = ieee_store_float_value(res,
547 IEEE_FMT_D, fa.nan | fb.nan);
548 }
549 X(divt)
550 {
551 struct ieee_float_value fa, fb;
552 double res;
553 ieee_interpret_float_value(reg(ic->arg[1]), &fa, IEEE_FMT_D);
554 ieee_interpret_float_value(reg(ic->arg[2]), &fb, IEEE_FMT_D);
555 if (fa.nan | fb.nan || fb.f == 0)
556 res = 0.0;
557 else
558 res = fa.f / fb.f;
559 reg(ic->arg[0]) = ieee_store_float_value(res,
560 IEEE_FMT_D, fa.nan | fb.nan || fb.f == 0);
561 }
562 X(cmpteq)
563 {
564 struct ieee_float_value fa, fb;
565 int res = 0;
566 ieee_interpret_float_value(reg(ic->arg[1]), &fa, IEEE_FMT_D);
567 ieee_interpret_float_value(reg(ic->arg[2]), &fb, IEEE_FMT_D);
568 if (fa.nan | fb.nan)
569 res = 0;
570 else
571 res = fa.f == fb.f;
572 reg(ic->arg[0]) = res;
573 }
574 X(cmptlt)
575 {
576 struct ieee_float_value fa, fb;
577 int res = 0;
578 ieee_interpret_float_value(reg(ic->arg[1]), &fa, IEEE_FMT_D);
579 ieee_interpret_float_value(reg(ic->arg[2]), &fb, IEEE_FMT_D);
580 if (fa.nan | fb.nan)
581 res = 0;
582 else
583 res = fa.f < fb.f;
584 reg(ic->arg[0]) = res;
585 }
586 X(cmptle)
587 {
588 struct ieee_float_value fa, fb;
589 int res = 0;
590 ieee_interpret_float_value(reg(ic->arg[1]), &fa, IEEE_FMT_D);
591 ieee_interpret_float_value(reg(ic->arg[2]), &fb, IEEE_FMT_D);
592 if (fa.nan | fb.nan)
593 res = 0;
594 else
595 res = fa.f <= fb.f;
596 reg(ic->arg[0]) = res;
597 }
598
599
600 /*
601 * mull: Signed Multiply 32x32 => 32.
602 *
603 * arg[0] = pointer to destination uint64_t
604 * arg[1] = pointer to source uint64_t
605 * arg[2] = pointer to source uint64_t
606 */
607 X(mull)
608 {
609 int32_t a = reg(ic->arg[1]);
610 int32_t b = reg(ic->arg[2]);
611 reg(ic->arg[0]) = (int64_t)(int32_t)(a * b);
612 }
613
614
615 /*
616 * mulq: Unsigned Multiply 64x64 => 64.
617 *
618 * arg[0] = pointer to destination uint64_t
619 * arg[1] = pointer to source uint64_t
620 * arg[2] = pointer to source uint64_t
621 */
622 X(mulq)
623 {
624 reg(ic->arg[0]) = reg(ic->arg[1]) * reg(ic->arg[2]);
625 }
626
627
628 /*
629 * umulh: Unsigned Multiply 64x64 => 128. Store high part in dest reg.
630 *
631 * arg[0] = pointer to destination uint64_t
632 * arg[1] = pointer to source uint64_t
633 * arg[2] = pointer to source uint64_t
634 */
635 X(umulh)
636 {
637 uint64_t reshi = 0, reslo = 0;
638 uint64_t s1 = reg(ic->arg[1]), s2 = reg(ic->arg[2]);
639 int i, bit;
640
641 for (i=0; i<64; i++) {
642 bit = (s1 & 0x8000000000000000ULL)? 1 : 0;
643 s1 <<= 1;
644
645 /* If bit in s1 set, then add s2 to reshi/lo: */
646 if (bit) {
647 uint64_t old_reslo = reslo;
648 reslo += s2;
649 if (reslo < old_reslo)
650 reshi ++;
651 }
652
653 if (i != 63) {
654 reshi <<= 1;
655 reshi += (reslo & 0x8000000000000000ULL? 1 : 0);
656 reslo <<= 1;
657 }
658 }
659
660 reg(ic->arg[0]) = reshi;
661 }
662
663
664 /*
665 * lda: Load address.
666 *
667 * arg[0] = pointer to destination uint64_t
668 * arg[1] = pointer to source uint64_t
669 * arg[2] = offset (possibly as an int32_t)
670 */
671 X(lda)
672 {
673 reg(ic->arg[0]) = reg(ic->arg[1]) + (int64_t)(int32_t)ic->arg[2];
674 }
675
676
677 /*
678 * lda_0: Load address compared to the zero register.
679 *
680 * arg[0] = pointer to destination uint64_t
681 * arg[1] = ignored
682 * arg[2] = offset (possibly as an int32_t)
683 */
684 X(lda_0)
685 {
686 reg(ic->arg[0]) = (int64_t)(int32_t)ic->arg[2];
687 }
688
689
690 /*
691 * clear: Clear a 64-bit register.
692 *
693 * arg[0] = pointer to destination uint64_t
694 */
695 X(clear)
696 {
697 reg(ic->arg[0]) = 0;
698 }
699
700
701 /*
702 * rdcc: Read the Cycle Counter into a 64-bit register.
703 *
704 * arg[0] = pointer to destination uint64_t
705 */
706 X(rdcc)
707 {
708 reg(ic->arg[0]) = cpu->cd.alpha.pcc;
709
710 /* TODO: actually keep the pcc updated! */
711 cpu->cd.alpha.pcc += 20;
712 }
713
714
715 #include "tmp_alpha_misc.c"
716
717
718 /*****************************************************************************/
719
720
721 X(end_of_page)
722 {
723 /* Update the PC: (offset 0, but on the next page) */
724 cpu->pc &= ~((ALPHA_IC_ENTRIES_PER_PAGE-1)
725 << ALPHA_INSTR_ALIGNMENT_SHIFT);
726 cpu->pc += (ALPHA_IC_ENTRIES_PER_PAGE
727 << ALPHA_INSTR_ALIGNMENT_SHIFT);
728
729 /* Find the new physical page and update the translation pointers: */
730 alpha_pc_to_pointers(cpu);
731
732 /* end_of_page doesn't count as an executed instruction: */
733 cpu->n_translated_instrs --;
734 }
735
736
737 /*****************************************************************************/
738
739
740 /*
741 * alpha_instr_to_be_translated():
742 *
743 * Translate an instruction word into an alpha_instr_call. ic is filled in with
744 * valid data for the translated instruction, or a "nothing" instruction if
745 * there was a translation failure. The newly translated instruction is then
746 * executed.
747 */
748 X(to_be_translated)
749 {
750 uint64_t addr, low_pc;
751 uint32_t iword;
752 struct alpha_vph_page *vph_p;
753 unsigned char *page;
754 unsigned char ib[4];
755 void (*samepage_function)(struct cpu *, struct alpha_instr_call *);
756 int opcode, ra, rb, func, rc, imm, load, loadstore_type, fp, llsc;
757 #ifdef DYNTRANS_BACKEND
758 int simple = 0;
759 #endif
760
761 /* Figure out the (virtual) address of the instruction: */
762 low_pc = ((size_t)ic - (size_t)cpu->cd.alpha.cur_ic_page)
763 / sizeof(struct alpha_instr_call);
764 addr = cpu->pc & ~((ALPHA_IC_ENTRIES_PER_PAGE-1) <<
765 ALPHA_INSTR_ALIGNMENT_SHIFT);
766 addr += (low_pc << ALPHA_INSTR_ALIGNMENT_SHIFT);
767 addr &= ~((1 << ALPHA_INSTR_ALIGNMENT_SHIFT) - 1);
768 cpu->pc = addr;
769
770 /* Read the instruction word from memory: */
771 if ((addr >> ALPHA_TOPSHIFT) == 0) {
772 vph_p = cpu->cd.alpha.vph_table0[(addr >>
773 ALPHA_LEVEL0_SHIFT) & 8191];
774 page = vph_p->host_load[(addr >> ALPHA_LEVEL1_SHIFT) & 8191];
775 } else if ((addr >> ALPHA_TOPSHIFT) == ALPHA_TOP_KERNEL) {
776 vph_p = cpu->cd.alpha.vph_table0_kernel[(addr >>
777 ALPHA_LEVEL0_SHIFT) & 8191];
778 page = vph_p->host_load[(addr >> ALPHA_LEVEL1_SHIFT) & 8191];
779 } else
780 page = NULL;
781
782 if (page != NULL) {
783 /* fatal("TRANSLATION HIT!\n"); */
784 memcpy(ib, page + (addr & 8191), sizeof(ib));
785 } else {
786 /* fatal("TRANSLATION MISS!\n"); */
787 if (!cpu->memory_rw(cpu, cpu->mem, addr, &ib[0],
788 sizeof(ib), MEM_READ, CACHE_INSTRUCTION)) {
789 fatal("to_be_translated(): read failed: TODO\n");
790 goto bad;
791 }
792 }
793
794 #ifdef HOST_LITTLE_ENDIAN
795 iword = *((uint32_t *)&ib[0]);
796 #else
797 iword = ib[0] + (ib[1]<<8) + (ib[2]<<16) + (ib[3]<<24);
798 #endif
799
800 /* fatal("{ Alpha: translating pc=0x%016llx iword=0x%08x }\n",
801 (long long)addr, (int)iword); */
802
803
804 #define DYNTRANS_TO_BE_TRANSLATED_HEAD
805 #include "cpu_dyntrans.c"
806 #undef DYNTRANS_TO_BE_TRANSLATED_HEAD
807
808
809 opcode = (iword >> 26) & 63;
810 ra = (iword >> 21) & 31;
811 rb = (iword >> 16) & 31;
812 func = (iword >> 5) & 0x7ff;
813 rc = iword & 31;
814 imm = iword & 0xffff;
815
816 switch (opcode) {
817 case 0x00: /* CALL_PAL */
818 ic->f = instr(call_pal);
819 ic->arg[0] = (size_t) (iword & 0x3ffffff);
820 break;
821 case 0x08: /* LDA */
822 case 0x09: /* LDAH */
823 if (ra == ALPHA_ZERO) {
824 ic->f = instr(nop);
825 break;
826 }
827 /* TODO: A special case which is common is to add or subtract
828 a small offset from sp. */
829 ic->f = instr(lda);
830 ic->arg[0] = (size_t) &cpu->cd.alpha.r[ra];
831 ic->arg[1] = (size_t) &cpu->cd.alpha.r[rb];
832 if (rb == ALPHA_ZERO)
833 ic->f = instr(lda_0);
834 ic->arg[2] = (ssize_t)(int16_t)imm;
835 if (opcode == 0x09)
836 ic->arg[2] <<= 16;
837 break;
838 case 0x0b: /* LDQ_U */
839 case 0x0f: /* STQ_U */
840 if (ra == ALPHA_ZERO && opcode == 0x0b) {
841 ic->f = instr(nop);
842 break;
843 }
844 if (opcode == 0x0b)
845 ic->f = instr(ldq_u);
846 else
847 ic->f = instr(stq_u);
848 ic->arg[0] = (size_t) &cpu->cd.alpha.r[ra];
849 ic->arg[1] = (size_t) &cpu->cd.alpha.r[rb];
850 ic->arg[2] = (ssize_t)(int16_t)imm;
851 break;
852 case 0x0a:
853 case 0x0c:
854 case 0x0d:
855 case 0x0e:
856 case 0x22:
857 case 0x23:
858 case 0x26:
859 case 0x27:
860 case 0x28:
861 case 0x29:
862 case 0x2a:
863 case 0x2b:
864 case 0x2c:
865 case 0x2d:
866 case 0x2e:
867 case 0x2f:
868 loadstore_type = 0; fp = 0; load = 0; llsc = 0;
869 switch (opcode) {
870 case 0x0a: loadstore_type = 0; load = 1; break; /* ldbu */
871 case 0x0c: loadstore_type = 1; load = 1; break; /* ldwu */
872 case 0x0d: loadstore_type = 1; break; /* stw */
873 case 0x0e: loadstore_type = 0; break; /* stb */
874 case 0x22: loadstore_type = 2; load = 1; fp = 1; break; /*lds*/
875 case 0x23: loadstore_type = 3; load = 1; fp = 1; break; /*ldt*/
876 case 0x26: loadstore_type = 2; fp = 1; break; /* sts */
877 case 0x27: loadstore_type = 3; fp = 1; break; /* stt */
878 case 0x28: loadstore_type = 2; load = 1; break; /* ldl */
879 case 0x29: loadstore_type = 3; load = 1; break; /* ldq */
880 case 0x2a: loadstore_type = 2; load = llsc = 1; break;/* ldl_l*/
881 case 0x2b: loadstore_type = 3; load = llsc = 1; break;/* ldq_l*/
882 case 0x2c: loadstore_type = 2; break; /* stl */
883 case 0x2d: loadstore_type = 3; break; /* stq */
884 case 0x2e: loadstore_type = 2; llsc = 1; break; /* stl_c */
885 case 0x2f: loadstore_type = 3; llsc = 1; break; /* stq_c */
886 }
887 ic->f = alpha_loadstore[
888 loadstore_type + (imm==0? 4 : 0) + 8 * load
889 + (cpu->machine->dyntrans_alignment_check? 16:0)
890 + 32 * llsc];
891 /* Load to the zero register is treated as a prefetch
892 hint. It is ignored here. */
893 if (load && ra == ALPHA_ZERO) {
894 ic->f = instr(nop);
895 break;
896 }
897 if (fp)
898 ic->arg[0] = (size_t) &cpu->cd.alpha.f[ra];
899 else
900 ic->arg[0] = (size_t) &cpu->cd.alpha.r[ra];
901 ic->arg[1] = (size_t) &cpu->cd.alpha.r[rb];
902 ic->arg[2] = (ssize_t)(int16_t)imm;
903 break;
904 case 0x10:
905 if (rc == ALPHA_ZERO) {
906 ic->f = instr(nop);
907 break;
908 }
909 ic->arg[0] = (size_t) &cpu->cd.alpha.r[rc];
910 ic->arg[1] = (size_t) &cpu->cd.alpha.r[ra];
911 if (func & 0x80)
912 ic->arg[2] = (size_t)((rb << 3) + (func >> 8));
913 else
914 ic->arg[2] = (size_t) &cpu->cd.alpha.r[rb];
915 switch (func & 0xff) {
916 case 0x00: ic->f = instr(addl); break;
917 case 0x02: ic->f = instr(s4addl); break;
918 case 0x09: ic->f = instr(subl); break;
919 case 0x0b: ic->f = instr(s4subl); break;
920 case 0x12: ic->f = instr(s8addl); break;
921 case 0x1b: ic->f = instr(s8subl); break;
922 case 0x1d: ic->f = instr(cmpult); break;
923 case 0x20: ic->f = instr(addq); break;
924 case 0x22: ic->f = instr(s4addq); break;
925 case 0x29: ic->f = instr(subq); break;
926 case 0x2b: ic->f = instr(s4subq); break;
927 case 0x2d: ic->f = instr(cmpeq); break;
928 case 0x32: ic->f = instr(s8addq); break;
929 case 0x3b: ic->f = instr(s8subq); break;
930 case 0x3d: ic->f = instr(cmpule); break;
931 case 0x4d: ic->f = instr(cmplt); break;
932 case 0x6d: ic->f = instr(cmple); break;
933
934 case 0x80: ic->f = instr(addl_imm); break;
935 case 0x82: ic->f = instr(s4addl_imm); break;
936 case 0x89: ic->f = instr(subl_imm); break;
937 case 0x8b: ic->f = instr(s4subl_imm); break;
938 case 0x92: ic->f = instr(s8addl_imm); break;
939 case 0x9b: ic->f = instr(s8subl_imm); break;
940 case 0x9d: ic->f = instr(cmpult_imm); break;
941 case 0xa0: ic->f = instr(addq_imm); break;
942 case 0xa2: ic->f = instr(s4addq_imm); break;
943 case 0xa9: ic->f = instr(subq_imm); break;
944 case 0xab: ic->f = instr(s4subq_imm); break;
945 case 0xad: ic->f = instr(cmpeq_imm); break;
946 case 0xb2: ic->f = instr(s8addq_imm); break;
947 case 0xbb: ic->f = instr(s8subq_imm); break;
948 case 0xbd: ic->f = instr(cmpule_imm); break;
949 case 0xcd: ic->f = instr(cmplt_imm); break;
950 case 0xed: ic->f = instr(cmple_imm); break;
951
952 default:fatal("[ Alpha: unimplemented function 0x%03x for"
953 " opcode 0x%02x ]\n", func, opcode);
954 goto bad;
955 }
956 break;
957 case 0x11:
958 if (rc == ALPHA_ZERO) {
959 ic->f = instr(nop);
960 break;
961 }
962 ic->arg[0] = (size_t) &cpu->cd.alpha.r[rc];
963 ic->arg[1] = (size_t) &cpu->cd.alpha.r[ra];
964 if (func & 0x80)
965 ic->arg[2] = (size_t)((rb << 3) + (func >> 8));
966 else
967 ic->arg[2] = (size_t) &cpu->cd.alpha.r[rb];
968 switch (func & 0xff) {
969 case 0x00: ic->f = instr(and); break;
970 case 0x08: ic->f = instr(andnot); break;
971 case 0x14: ic->f = instr(cmovlbs); break;
972 case 0x16: ic->f = instr(cmovlbc); break;
973 case 0x20: ic->f = instr(or);
974 if (ra == ALPHA_ZERO || rb == ALPHA_ZERO) {
975 if (ra == ALPHA_ZERO)
976 ra = rb;
977 ic->f = alpha_mov_r_r[ra + rc*32];
978 }
979 break;
980 case 0x24: ic->f = instr(cmoveq); break;
981 case 0x26: ic->f = instr(cmovne); break;
982 case 0x28: ic->f = instr(ornot); break;
983 case 0x40: ic->f = instr(xor); break;
984 case 0x44: ic->f = instr(cmovlt); break;
985 case 0x46: ic->f = instr(cmovge); break;
986 case 0x48: ic->f = instr(xornot); break;
987 case 0x64: ic->f = instr(cmovle); break;
988 case 0x66: ic->f = instr(cmovgt); break;
989 case 0x80: ic->f = instr(and_imm); break;
990 case 0x88: ic->f = instr(andnot_imm); break;
991 case 0x94: ic->f = instr(cmovlbs_imm); break;
992 case 0x96: ic->f = instr(cmovlbc_imm); break;
993 case 0xa0: ic->f = instr(or_imm); break;
994 case 0xa4: ic->f = instr(cmoveq_imm); break;
995 case 0xa6: ic->f = instr(cmovne_imm); break;
996 case 0xa8: ic->f = instr(ornot_imm); break;
997 case 0xc0: ic->f = instr(xor_imm); break;
998 case 0xc4: ic->f = instr(cmovlt_imm); break;
999 case 0xc6: ic->f = instr(cmovge_imm); break;
1000 case 0xc8: ic->f = instr(xornot_imm); break;
1001 case 0xe4: ic->f = instr(cmovle_imm); break;
1002 case 0xe6: ic->f = instr(cmovgt_imm); break;
1003 default:fatal("[ Alpha: unimplemented function 0x%03x for"
1004 " opcode 0x%02x ]\n", func, opcode);
1005 goto bad;
1006 }
1007 break;
1008 case 0x12:
1009 if (rc == ALPHA_ZERO) {
1010 ic->f = instr(nop);
1011 break;
1012 }
1013 ic->arg[0] = (size_t) &cpu->cd.alpha.r[rc];
1014 ic->arg[1] = (size_t) &cpu->cd.alpha.r[ra];
1015 if (func & 0x80)
1016 ic->arg[2] = (size_t)((rb << 3) + (func >> 8));
1017 else
1018 ic->arg[2] = (size_t) &cpu->cd.alpha.r[rb];
1019 switch (func & 0xff) {
1020 case 0x02: ic->f = instr(mskbl); break;
1021 case 0x06: ic->f = instr(extbl); break;
1022 case 0x0b: ic->f = instr(insbl); break;
1023 case 0x12: ic->f = instr(mskwl); break;
1024 case 0x16: ic->f = instr(extwl); break;
1025 case 0x1b: ic->f = instr(inswl); break;
1026 case 0x22: ic->f = instr(mskll); break;
1027 case 0x26: ic->f = instr(extll); break;
1028 case 0x2b: ic->f = instr(insll); break;
1029 case 0x30: ic->f = instr(zap); break;
1030 case 0x31: ic->f = instr(zapnot); break;
1031 case 0x32: ic->f = instr(mskql); break;
1032 case 0x34: ic->f = instr(srl); break;
1033 case 0x36: ic->f = instr(extql); break;
1034 case 0x39: ic->f = instr(sll); break;
1035 case 0x3b: ic->f = instr(insql); break;
1036 case 0x3c: ic->f = instr(sra); break;
1037 case 0x52: ic->f = instr(mskwh); break;
1038 case 0x57: ic->f = instr(inswh); break;
1039 case 0x5a: ic->f = instr(extwh); break;
1040 case 0x62: ic->f = instr(msklh); break;
1041 case 0x67: ic->f = instr(inslh); break;
1042 case 0x6a: ic->f = instr(extlh); break;
1043 case 0x72: ic->f = instr(mskqh); break;
1044 case 0x77: ic->f = instr(insqh); break;
1045 case 0x7a: ic->f = instr(extqh); break;
1046 case 0x82: ic->f = instr(mskbl_imm); break;
1047 case 0x86: ic->f = instr(extbl_imm); break;
1048 case 0x8b: ic->f = instr(insbl_imm); break;
1049 case 0x92: ic->f = instr(mskwl_imm); break;
1050 case 0x96: ic->f = instr(extwl_imm); break;
1051 case 0x9b: ic->f = instr(inswl_imm); break;
1052 case 0xa2: ic->f = instr(mskll_imm); break;
1053 case 0xa6: ic->f = instr(extll_imm); break;
1054 case 0xab: ic->f = instr(insll_imm); break;
1055 case 0xb0: ic->f = instr(zap_imm); break;
1056 case 0xb1: ic->f = instr(zapnot_imm); break;
1057 case 0xb2: ic->f = instr(mskql_imm); break;
1058 case 0xb4: ic->f = instr(srl_imm); break;
1059 case 0xb6: ic->f = instr(extql_imm); break;
1060 case 0xb9: ic->f = instr(sll_imm); break;
1061 case 0xbb: ic->f = instr(insql_imm); break;
1062 case 0xbc: ic->f = instr(sra_imm); break;
1063 case 0xd2: ic->f = instr(mskwh_imm); break;
1064 case 0xd7: ic->f = instr(inswh_imm); break;
1065 case 0xda: ic->f = instr(extwh_imm); break;
1066 case 0xe2: ic->f = instr(msklh_imm); break;
1067 case 0xe7: ic->f = instr(inslh_imm); break;
1068 case 0xea: ic->f = instr(extlh_imm); break;
1069 case 0xf2: ic->f = instr(mskqh_imm); break;
1070 case 0xf7: ic->f = instr(insqh_imm); break;
1071 case 0xfa: ic->f = instr(extqh_imm); break;
1072 default:fatal("[ Alpha: unimplemented function 0x%03x for"
1073 " opcode 0x%02x ]\n", func, opcode);
1074 goto bad;
1075 }
1076 break;
1077 case 0x13:
1078 if (rc == ALPHA_ZERO) {
1079 ic->f = instr(nop);
1080 break;
1081 }
1082 ic->arg[0] = (size_t) &cpu->cd.alpha.r[rc];
1083 ic->arg[1] = (size_t) &cpu->cd.alpha.r[ra];
1084 if (func & 0x80)
1085 ic->arg[2] = (size_t)((rb << 3) + (func >> 8));
1086 else
1087 ic->arg[2] = (size_t) &cpu->cd.alpha.r[rb];
1088 switch (func & 0xff) {
1089 case 0x00: ic->f = instr(mull); break;
1090 case 0x20: ic->f = instr(mulq); break;
1091 case 0x30: ic->f = instr(umulh); break;
1092 default:fatal("[ Alpha: unimplemented function 0x%03x for"
1093 " opcode 0x%02x ]\n", func, opcode);
1094 goto bad;
1095 }
1096 break;
1097 case 0x16:
1098 if (rc == ALPHA_ZERO) {
1099 ic->f = instr(nop);
1100 break;
1101 }
1102 ic->arg[0] = (size_t) &cpu->cd.alpha.f[rc];
1103 ic->arg[1] = (size_t) &cpu->cd.alpha.f[ra];
1104 ic->arg[2] = (size_t) &cpu->cd.alpha.f[rb];
1105 switch (func & 0x7ff) {
1106 case 0x02f: ic->f = instr(cvttq_c); break;
1107 case 0x0a0: ic->f = instr(addt); break;
1108 case 0x0a1: ic->f = instr(subt); break;
1109 case 0x0a2: ic->f = instr(mult); break;
1110 case 0x0a3: ic->f = instr(divt); break;
1111 case 0x0a5: ic->f = instr(cmpteq); break;
1112 case 0x0a6: ic->f = instr(cmptlt); break;
1113 case 0x0a7: ic->f = instr(cmptle); break;
1114 case 0x0be: ic->f = instr(cvtqt); break;
1115 default:fatal("[ Alpha: unimplemented function 0x%03x for"
1116 " opcode 0x%02x ]\n", func, opcode);
1117 goto bad;
1118 }
1119 break;
1120 case 0x17:
1121 if (rc == ALPHA_ZERO) {
1122 ic->f = instr(nop);
1123 break;
1124 }
1125 ic->arg[0] = (size_t) &cpu->cd.alpha.f[rc];
1126 ic->arg[1] = (size_t) &cpu->cd.alpha.f[ra];
1127 ic->arg[2] = (size_t) &cpu->cd.alpha.f[rb];
1128 switch (func & 0x7ff) {
1129 case 0x020:
1130 /* fabs (or fclr): */
1131 if (ra == 31 && rb == 31)
1132 ic->f = instr(clear);
1133 else
1134 ic->f = instr(fabs);
1135 break;
1136 case 0x021:
1137 ic->f = instr(fneg);
1138 break;
1139 default:fatal("[ Alpha: unimplemented function 0x%03x for"
1140 " opcode 0x%02x ]\n", func, opcode);
1141 goto bad;
1142 }
1143 break;
1144 case 0x18:
1145 switch (iword & 0xffff) {
1146 case 0x4000: /* mb */
1147 case 0x4400: /* wmb */
1148 ic->f = instr(nop);
1149 break;
1150 case 0xc000: /* rdcc ra */
1151 if (ra == ALPHA_ZERO) {
1152 ic->f = instr(nop);
1153 break;
1154 }
1155 ic->arg[0] = (size_t) &cpu->cd.alpha.r[ra];
1156 ic->f = instr(rdcc);
1157 break;
1158 default:fatal("[ Alpha: unimplemented function 0x%03x for"
1159 " opcode 0x%02x ]\n", func, opcode);
1160 goto bad;
1161 }
1162 break;
1163 case 0x1a:
1164 switch ((iword >> 14) & 3) {
1165 case 0: /* JMP */
1166 case 1: /* JSR */
1167 case 2: /* RET */
1168 ic->arg[0] = (size_t) &cpu->cd.alpha.r[ra];
1169 ic->arg[1] = (size_t) &cpu->cd.alpha.r[rb];
1170 if (ra == ALPHA_ZERO) {
1171 if (cpu->machine->show_trace_tree &&
1172 rb == ALPHA_RA)
1173 ic->f = instr(jsr_0_trace);
1174 else
1175 ic->f = instr(jsr_0);
1176 } else {
1177 if (cpu->machine->show_trace_tree)
1178 ic->f = instr(jsr_trace);
1179 else
1180 ic->f = instr(jsr);
1181 }
1182 break;
1183 default:fatal("[ Alpha: unimpl JSR type %i, ra=%i rb=%i ]\n",
1184 ((iword >> 14) & 3), ra, rb);
1185 goto bad;
1186 }
1187 break;
1188 case 0x30: /* BR */
1189 case 0x31: /* FBEQ */
1190 case 0x34: /* BSR */
1191 case 0x35: /* FBNE */
1192 case 0x38: /* BLBC */
1193 case 0x39: /* BEQ */
1194 case 0x3a: /* BLT */
1195 case 0x3b: /* BLE */
1196 case 0x3c: /* BLBS */
1197 case 0x3d: /* BNE */
1198 case 0x3e: /* BGE */
1199 case 0x3f: /* BGT */
1200 /* To avoid a GCC warning: */
1201 samepage_function = instr(nop);
1202 fp = 0;
1203 switch (opcode) {
1204 case 0x30:
1205 case 0x34:
1206 ic->f = instr(br);
1207 samepage_function = instr(br_samepage);
1208 if (ra != ALPHA_ZERO) {
1209 ic->f = instr(br_return);
1210 samepage_function = instr(br_return_samepage);
1211 }
1212 break;
1213 case 0x38:
1214 ic->f = instr(blbc);
1215 samepage_function = instr(blbc_samepage);
1216 break;
1217 case 0x31:
1218 fp = 1;
1219 case 0x39:
1220 ic->f = instr(beq);
1221 samepage_function = instr(beq_samepage);
1222 break;
1223 case 0x3a:
1224 ic->f = instr(blt);
1225 samepage_function = instr(blt_samepage);
1226 break;
1227 case 0x3b:
1228 ic->f = instr(ble);
1229 samepage_function = instr(ble_samepage);
1230 break;
1231 case 0x3c:
1232 ic->f = instr(blbs);
1233 samepage_function = instr(blbs_samepage);
1234 break;
1235 case 0x35:
1236 fp = 1;
1237 case 0x3d:
1238 ic->f = instr(bne);
1239 samepage_function = instr(bne_samepage);
1240 break;
1241 case 0x3e:
1242 ic->f = instr(bge);
1243 samepage_function = instr(bge_samepage);
1244 break;
1245 case 0x3f:
1246 ic->f = instr(bgt);
1247 samepage_function = instr(bgt_samepage);
1248 break;
1249 }
1250 if (fp)
1251 ic->arg[1] = (size_t) &cpu->cd.alpha.f[ra];
1252 else
1253 ic->arg[1] = (size_t) &cpu->cd.alpha.r[ra];
1254 ic->arg[0] = (iword & 0x001fffff) << 2;
1255 /* Sign-extend: */
1256 if (ic->arg[0] & 0x00400000)
1257 ic->arg[0] |= 0xffffffffff800000ULL;
1258 /* Branches are calculated as PC + 4 + offset. */
1259 ic->arg[0] = (size_t)(ic->arg[0] + 4);
1260 /* Special case: branch within the same page: */
1261 {
1262 uint64_t mask_within_page =
1263 ((ALPHA_IC_ENTRIES_PER_PAGE-1) << 2) | 3;
1264 uint64_t old_pc = addr;
1265 uint64_t new_pc = old_pc + (int32_t)ic->arg[0];
1266 if ((old_pc & ~mask_within_page) ==
1267 (new_pc & ~mask_within_page)) {
1268 ic->f = samepage_function;
1269 ic->arg[0] = (size_t) (
1270 cpu->cd.alpha.cur_ic_page +
1271 ((new_pc & mask_within_page) >> 2));
1272 }
1273 }
1274 break;
1275 default:fatal("[ UNIMPLEMENTED Alpha opcode 0x%x ]\n", opcode);
1276 goto bad;
1277 }
1278
1279
1280 #define DYNTRANS_TO_BE_TRANSLATED_TAIL
1281 #include "cpu_dyntrans.c"
1282 #undef DYNTRANS_TO_BE_TRANSLATED_TAIL
1283 }
1284

  ViewVC Help
Powered by ViewVC 1.1.26