/[dynamips]/upstream/dynamips-0.2.6-RC5/dev_dec21140.c
This is repository of my old source code which isn't updated any more. Go to git.rot13.org for current projects!
ViewVC logotype

Contents of /upstream/dynamips-0.2.6-RC5/dev_dec21140.c

Parent Directory Parent Directory | Revision Log Revision Log


Revision 5 - (show annotations)
Sat Oct 6 16:08:03 2007 UTC (16 years, 5 months ago) by dpavlin
Original Path: upstream/dynamips-0.2.6-RC4/dev_dec21140.c
File MIME type: text/plain
File size: 28018 byte(s)
dynamips-0.2.6-RC4

1 /*
2 * Cisco C7200 (Predator) DEC21140 Module.
3 * Copyright (C) 2005,2006 Christophe Fillot. All rights reserved.
4 *
5 * DEC21140 FastEthernet chip emulation.
6 *
7 * It allows to emulate a C7200-IO-FE card with 1 port and PA-FE-TX cards.
8 *
9 * Many many thanks to mtve (aka "Mtv Europe") for his great work on
10 * this stuff.
11 *
12 * Manuals:
13 *
14 * DECchip 21140 PCI fast Ethernet LAN controller Hardware reference manual
15 * http://ftp.nluug.nl/NetBSD/misc/dec-docs/ec-qc0cb-te.ps.gz
16 *
17 * National DP83840 PHY
18 * http://www.rezrov.net/docs/DP83840A.pdf
19 *
20 * Remark: only Big-endian mode is supported.
21 */
22
23 #include <stdio.h>
24 #include <stdlib.h>
25 #include <string.h>
26 #include <stdarg.h>
27 #include <unistd.h>
28 #include <time.h>
29 #include <errno.h>
30 #include <assert.h>
31
32 #include "crc.h"
33 #include "utils.h"
34 #include "mips64.h"
35 #include "dynamips.h"
36 #include "memory.h"
37 #include "device.h"
38 #include "net.h"
39 #include "net_io.h"
40 #include "ptask.h"
41 #include "dev_dec21140.h"
42
43 /* Debugging flags */
44 #define DEBUG_MII_REGS 0
45 #define DEBUG_CSR_REGS 0
46 #define DEBUG_PCI_REGS 0
47 #define DEBUG_TRANSMIT 0
48 #define DEBUG_RECEIVE 0
49
50 /* DEC21140 PCI vendor/product codes */
51 #define DEC21140_PCI_VENDOR_ID 0x1011
52 #define DEC21140_PCI_PRODUCT_ID 0x0009
53
54 /* DEC21140 PCI registers */
55 #define DEC21140_PCI_CFID_REG_OFFSET 0x00
56 #define DEC21140_PCI_CFCS_REG_OFFSET 0x04
57 #define DEC21140_PCI_CFRV_REG_OFFSET 0x08
58 #define DEC21140_PCI_CFLT_REG_OFFSET 0x0C
59 #define DEC21140_PCI_CBIO_REG_OFFSET 0x10
60 #define DEC21140_PCI_CBMA_REG_OFFSET 0x14
61 #define DEC21140_PCI_CFIT_REG_OFFSET 0x3C
62 #define DEC21140_PCI_CFDA_REG_OFFSET 0x40
63
64 /* Number of CSR registers */
65 #define DEC21140_CSR_NR 16
66
67 /* CSR5: Status Register */
68 #define DEC21140_CSR5_TI 0x00000001
69 #define DEC21140_CSR5_RI 0x00000040
70 #define DEC21140_CSR5_RS_SHIFT 17
71 #define DEC21140_CSR5_TS_SHIFT 20
72
73 /* CSR6: Operating Mode Register */
74 #define DEC21140_CSR6_START_RX 0x00000002
75 #define DEC21140_CSR6_START_TX 0x00002000
76 #define DEC21140_CSR6_PROMISC 0x00000040
77
78 /* CSR9: Serial EEPROM and MII */
79 #define DEC21140_CSR9_RX_BIT 0x00080000
80 #define DEC21140_CSR9_MII_READ 0x00040000
81 #define DEC21140_CSR9_TX_BIT 0x00020000
82 #define DEC21140_CSR9_MDC_CLOCK 0x00010000
83 #define DEC21140_CSR9_READ 0x00004000
84 #define DEC21140_CSR9_WRITE 0x00002000
85
86 /* Maximum packet size */
87 #define DEC21140_MAX_PKT_SIZE 2048
88
89 /* Send up to 32 packets in a TX ring scan pass */
90 #define DEC21140_TXRING_PASS_COUNT 32
91
92 /* Setup frame size */
93 #define DEC21140_SETUP_FRAME_SIZE 192
94
95 /* RX descriptors */
96 #define DEC21140_RXDESC_OWN 0x80000000 /* Ownership */
97 #define DEC21140_RXDESC_LS 0x00000100 /* Last Segment */
98 #define DEC21140_RXDESC_FS 0x00000200 /* First Segment */
99 #define DEC21140_RXDESC_MF 0x00000400 /* Multicast Frame */
100 #define DEC21140_RXDESC_DE 0x00004000 /* Descriptor Error */
101 #define DEC21140_RXDESC_RCH 0x01000000 /* Sec. Addr. Chained */
102 #define DEC21140_RXDESC_RER 0x02000000 /* Receive End of Ring */
103 #define DEC21140_RXDESC_FL_SHIFT 16
104 #define DEC21140_RXDESC_LEN_MASK 0x7ff
105
106 /* TX descriptors */
107 #define DEC21140_TXDESC_OWN 0x80000000 /* Ownership */
108 #define DEC21140_TXDESC_TCH 0x01000000 /* Sec. Addr. Chained */
109 #define DEC21140_TXDESC_TER 0x02000000 /* Transmit End of Ring */
110 #define DEC21140_TXDESC_SET 0x08000000 /* Setup frame */
111 #define DEC21140_TXDESC_FS 0x20000000 /* First Segment */
112 #define DEC21140_TXDESC_LS 0x40000000 /* Last Segment */
113 #define DEC21140_TXDESC_IC 0x80000000 /* IRQ on completion */
114
115 #define DEC21140_TXDESC_LEN_MASK 0x7ff
116
117 /* RX Descriptor */
118 struct rx_desc {
119 m_uint32_t rdes[4];
120 };
121
122 /* TX Descriptor */
123 struct tx_desc {
124 m_uint32_t tdes[4];
125 };
126
127 /* DEC21140 Data */
128 struct dec21140_data {
129 char *name;
130
131 /* Physical addresses of current RX and TX descriptors */
132 m_uint32_t rx_current;
133 m_uint32_t tx_current;
134
135 /* CSR registers */
136 m_uint32_t csr[DEC21140_CSR_NR];
137
138 /* MII registers */
139 m_uint32_t mii_state;
140 m_uint32_t mii_phy;
141 m_uint32_t mii_reg;
142 m_uint32_t mii_data;
143 m_uint32_t mii_outbits;
144 m_uint16_t mii_regs[32][32];
145
146 /* Ethernet unicast addresses */
147 n_eth_addr_t mac_addr[16];
148 u_int mac_addr_count;
149
150 /* Device information */
151 struct vdevice *dev;
152
153 /* PCI device information */
154 struct pci_device *pci_dev;
155
156 /* Virtual machine */
157 vm_instance_t *vm;
158
159 /* NetIO descriptor */
160 netio_desc_t *nio;
161
162 /* TX ring scanner task id */
163 ptask_id_t tx_tid;
164 };
165
166 /* Log a dec21140 message */
167 #define DEC21140_LOG(d,msg...) vm_log((d)->vm,(d)->name,msg)
168
169 /*
170 * ISL rewrite.
171 *
172 * See: http://www.cisco.com/en/US/tech/tk389/tk390/technologies_tech_note09186a0080094665.shtml
173 */
174 static void dec21140_isl_rewrite(m_uint8_t *pkt,m_uint32_t tot_len)
175 {
176 static m_uint8_t isl_xaddr[N_ETH_ALEN] = { 0x01,0x00,0x0c,0x00,0x10,0x00 };
177 u_int real_offset,real_len;
178 n_eth_hdr_t *hdr;
179 m_uint32_t ifcs;
180
181 hdr = (n_eth_hdr_t *)pkt;
182 if (!memcmp(&hdr->daddr,isl_xaddr,N_ETH_ALEN)) {
183 real_offset = N_ETH_HLEN + N_ISL_HDR_SIZE;
184 real_len = ntohs(hdr->type);
185 real_len -= (N_ISL_HDR_SIZE + 4);
186
187 if ((real_offset+real_len) > tot_len)
188 return;
189
190 /* Rewrite the destination MAC address */
191 hdr->daddr.eth_addr_byte[4] = 0x00;
192
193 /* Compute the internal FCS on the encapsulated packet */
194 ifcs = crc32_compute(0xFFFFFFFF,pkt+real_offset,real_len);
195 pkt[tot_len-4] = ifcs & 0xff;
196 pkt[tot_len-3] = (ifcs >> 8) & 0xff;
197 pkt[tot_len-2] = (ifcs >> 16) & 0xff;
198 pkt[tot_len-1] = ifcs >> 24;
199 }
200 }
201
202 /* Check if a packet must be delivered to the emulated chip */
203 static inline int dec21140_handle_mac_addr(struct dec21140_data *d,
204 m_uint8_t *pkt)
205 {
206 n_eth_hdr_t *hdr = (n_eth_hdr_t *)pkt;
207 int i;
208
209 /* Accept systematically frames if we are running is promiscuous mode */
210 if (d->csr[6] & DEC21140_CSR6_PROMISC)
211 return(TRUE);
212
213 /* Accept systematically all multicast frames */
214 if (eth_addr_is_mcast(&hdr->daddr))
215 return(TRUE);
216
217 /* Accept frames directly for us, discard others */
218 for(i=0;i<d->mac_addr_count;i++)
219 if (!memcmp(&d->mac_addr[i],&hdr->daddr,N_ETH_ALEN))
220 return(TRUE);
221
222 return(FALSE);
223 }
224
225 /* Update MAC addresses */
226 static void dec21140_update_mac_addr(struct dec21140_data *d,
227 u_char *setup_frame)
228 {
229 n_eth_addr_t addr;
230 int i,nb_addr,addr_size;
231
232 d->mac_addr_count = 0;
233
234 addr_size = N_ETH_ALEN * 2;
235 nb_addr = DEC21140_SETUP_FRAME_SIZE / addr_size;
236
237 for(i=0;i<nb_addr;i++) {
238 addr.eth_addr_byte[0] = setup_frame[(i * addr_size) + 0];
239 addr.eth_addr_byte[1] = setup_frame[(i * addr_size) + 1];
240 addr.eth_addr_byte[2] = setup_frame[(i * addr_size) + 4];
241 addr.eth_addr_byte[3] = setup_frame[(i * addr_size) + 5];
242 addr.eth_addr_byte[4] = setup_frame[(i * addr_size) + 8];
243 addr.eth_addr_byte[5] = setup_frame[(i * addr_size) + 9];
244
245 if (!eth_addr_is_mcast(&addr)) {
246 memcpy(&d->mac_addr[d->mac_addr_count],&addr,N_ETH_ALEN);
247 DEC21140_LOG(d,"unicast MAC address: "
248 "%2.2x:%2.2x:%2.2x:%2.2x:%2.2x:%2.2x\n",
249 addr.eth_addr_byte[0],addr.eth_addr_byte[1],
250 addr.eth_addr_byte[2],addr.eth_addr_byte[3],
251 addr.eth_addr_byte[4],addr.eth_addr_byte[5]);
252 d->mac_addr_count++;
253 }
254 }
255 }
256
257 /* Get a PCI register name */
258 static char *pci_cfgreg_name(int reg)
259 {
260 static char *name[] = {
261 "FID", "FCS", "FRV", "FLT", "BIO", "BMA", "?", "?",
262 "?", "?", "?", "?", "?", "?", "?", "FIT", "FDA"
263 };
264
265 return((reg>=0) && (reg<=DEC21140_CSR_NR*4) && ((reg&3)==0) ?
266 name[reg>>2] : "?");
267 }
268
269 /*
270 * read from register of DP83840A PHY
271 */
272 static m_uint16_t mii_reg_read(struct dec21140_data *d)
273 {
274 #if DEBUG_MII_REGS
275 DEC21140_LOG(d,"MII PHY read %d reg %d\n",d->mii_phy,d->mii_reg);
276 #endif
277
278 /*
279 * if it's BASIC MODE STATUS REGISTER (BMSR) at address 0x1
280 * then tell them that "Link Status" is up and no troubles.
281 */
282 if (d->mii_reg == 1) {
283 if (d->nio != NULL)
284 return(0x04);
285 else
286 return(0x00);
287 }
288
289 return(d->mii_regs[d->mii_phy][d->mii_reg]);
290 }
291
292 /*
293 * write to register of DP83840A PHY
294 */
295 static void mii_reg_write(struct dec21140_data *d)
296 {
297 #if DEBUG_MII_REGS
298 DEC21140_LOG(d,"MII PHY write %d reg %d value %04x\n",
299 d->mii_phy,d->mii_reg,d->mii_data);
300 #endif
301 assert(d->mii_phy < 32);
302 assert(d->mii_reg < 32);
303 d->mii_regs[d->mii_phy][d->mii_reg] = d->mii_data;
304 }
305
306 /*
307 * process new bit sent by IOS to PHY.
308 */
309 static void mii_newbit(struct dec21140_data *d,int newbit)
310 {
311 #if DEBUG_MII_REGS
312 DEC21140_LOG(d,"MII state was %d\n",d->mii_state);
313 #endif
314
315 switch (d->mii_state) {
316 case 0: /* init */
317 d->mii_state = newbit ? 0 : 1;
318 d->mii_phy = 0;
319 d->mii_reg = 0;
320 d->mii_data = 0;
321 break;
322
323 case 1: /* already got 0 */
324 d->mii_state = newbit ? 2 : 0;
325 break;
326
327 case 2: /* already got attention */
328 d->mii_state = newbit ? 3 : 4;
329 break;
330
331 case 3: /* probably it's read */
332 d->mii_state = newbit ? 0 : 10;
333 break;
334
335 case 4: /* probably it's write */
336 d->mii_state = newbit ? 20 : 0;
337 break;
338
339 case 10: case 11: case 12: case 13: case 14:
340 case 20: case 21: case 22: case 23: case 24:
341 /* read or write state, read 5 bits of phy */
342 d->mii_phy <<= 1;
343 d->mii_phy |= newbit;
344 d->mii_state++;
345 break;
346
347 case 15: case 16: case 17: case 18: case 19:
348 case 25: case 26: case 27: case 28: case 29:
349 /* read or write state, read 5 bits of reg */
350 d->mii_reg <<= 1;
351 d->mii_reg |= newbit;
352 d->mii_state++;
353
354 if (d->mii_state == 20) {
355 /* read state, got everything */
356 d->mii_outbits = mii_reg_read (d) << 15; /* first bit will
357 * be thrown away!
358 */
359 d->mii_state = 0;
360 }
361
362 break;
363
364 case 30: /* write state, read first waiting bit */
365 d->mii_state = newbit ? 31 : 0;
366 break;
367
368 case 31: /* write state, read second waiting bit */
369 d->mii_state = newbit ? 0 : 32;
370 break;
371
372 case 32: case 33: case 34: case 35: case 36: case 37: case 38: case 39:
373 case 40: case 41: case 42: case 43: case 44: case 45: case 46: case 47:
374 /* write state, read 16 bits of data */
375 d->mii_data <<= 1;
376 d->mii_data |= newbit;
377 d->mii_state++;
378
379 if (d->mii_state == 48) {
380 /* write state, got everything */
381 mii_reg_write (d);
382 d->mii_state = 0;
383 }
384
385 break;
386 default:
387 DEC21140_LOG(d,"MII impossible state\n");
388 }
389
390 #if DEBUG_MII_REGS
391 DEC21140_LOG(d,"MII state now %d\n",d->mii_state);
392 #endif
393 }
394
395 /*
396 * dev_dec21140_access()
397 */
398 void *dev_dec21140_access(cpu_mips_t *cpu,struct vdevice *dev,
399 m_uint32_t offset,u_int op_size,u_int op_type,
400 m_uint64_t *data)
401 {
402 struct dec21140_data *d = dev->priv_data;
403 u_int reg;
404
405 /* which CSR register ? */
406 reg = offset / 8;
407
408 if ((reg >= DEC21140_CSR_NR) || (offset % 8) != 0) {
409 cpu_log(cpu,d->name,"invalid access to offset 0x%x\n",offset);
410 return NULL;
411 }
412
413 if (op_type == MTS_READ) {
414 #if DEBUG_CSR_REGS
415 cpu_log(cpu,d->name,"read CSR%u value 0x%x\n",reg,d->csr[reg]);
416 #endif
417 switch(reg) {
418 case 5:
419 /* Dynamically construct CSR5 */
420 *data = 0;
421
422 if (d->csr[6] & DEC21140_CSR6_START_RX)
423 *data |= 0x03 << DEC21140_CSR5_RS_SHIFT;
424
425 if (d->csr[6] & DEC21140_CSR6_START_TX)
426 *data |= 0x03 << DEC21140_CSR5_TS_SHIFT;
427
428 *data |= d->csr[5] & (DEC21140_CSR5_TI|DEC21140_CSR5_RI);
429 break;
430
431 case 8:
432 /* CSR8 is cleared when read (missed frame counter) */
433 d->csr[reg] = 0;
434 *data = 0;
435 break;
436
437 default:
438 *data = d->csr[reg];
439 }
440 } else {
441 #if DEBUG_CSR_REGS
442 cpu_log(cpu,d->name,"write CSR%u value 0x%x\n",reg,(m_uint32_t)*data);
443 #endif
444 d->csr[reg] = *data;
445
446 switch(reg) {
447 case 3:
448 d->rx_current = d->csr[reg];
449 break;
450 case 4:
451 d->tx_current = d->csr[reg];
452 break;
453 case 9:
454 /*
455 * CSR9, probably they want to mess with MII PHY
456 * The protocol to PHY is like serial over one bit.
457 * We will ignore clock 0 of read or write.
458 *
459 * This whole code is needed only to tell IOS that "Link Status"
460 * bit in BMSR register of DP83840A PHY is set.
461 *
462 * Also it makes "sh contr f0/0" happy.
463 */
464 if ((*data&~DEC21140_CSR9_TX_BIT) == (DEC21140_CSR9_MII_READ|
465 DEC21140_CSR9_READ|DEC21140_CSR9_MDC_CLOCK)) {
466 /*
467 * read, pop one bit from mii_outbits
468 */
469 if (d->mii_outbits & (1<<31))
470 d->csr[9] |= DEC21140_CSR9_RX_BIT;
471 else
472 d->csr[9] &= ~DEC21140_CSR9_RX_BIT;
473 d->mii_outbits <<= 1;
474 } else if((*data&~DEC21140_CSR9_TX_BIT) ==
475 (DEC21140_CSR9_WRITE|DEC21140_CSR9_MDC_CLOCK)) {
476 /*
477 * write, we've got input, do state machine
478 */
479 mii_newbit(d,(*data&DEC21140_CSR9_TX_BIT) ? 1 : 0);
480 }
481 break;
482 }
483 }
484
485 return NULL;
486 }
487
488 /*
489 * Get the address of the next RX descriptor.
490 */
491 static m_uint32_t rxdesc_get_next(struct dec21140_data *d,m_uint32_t rxd_addr,
492 struct rx_desc *rxd)
493 {
494 m_uint32_t nrxd_addr;
495
496 /* go to the next descriptor */
497 if (rxd->rdes[1] & DEC21140_RXDESC_RER)
498 nrxd_addr = d->csr[3];
499 else {
500 if (rxd->rdes[1] & DEC21140_RXDESC_RCH)
501 nrxd_addr = rxd->rdes[3];
502 else
503 nrxd_addr = rxd_addr + sizeof(struct rx_desc);
504 }
505
506 return(nrxd_addr);
507 }
508
509 /* Read a RX descriptor */
510 static void rxdesc_read(struct dec21140_data *d,m_uint32_t rxd_addr,
511 struct rx_desc *rxd)
512 {
513 /* get the next descriptor from VM physical RAM */
514 physmem_copy_from_vm(d->vm,rxd,rxd_addr,sizeof(struct rx_desc));
515
516 /* byte-swapping */
517 rxd->rdes[0] = vmtoh32(rxd->rdes[0]);
518 rxd->rdes[1] = vmtoh32(rxd->rdes[1]);
519 rxd->rdes[2] = vmtoh32(rxd->rdes[2]);
520 rxd->rdes[3] = vmtoh32(rxd->rdes[3]);
521 }
522
523 /*
524 * Try to acquire the specified RX descriptor. Returns TRUE if we have it.
525 * It assumes that the byte-swapping is done.
526 */
527 static inline int rxdesc_acquire(m_uint32_t rdes0)
528 {
529 return(rdes0 & DEC21140_RXDESC_OWN);
530 }
531
532 /* Put a packet in buffer(s) of a descriptor */
533 static void rxdesc_put_pkt(struct dec21140_data *d,struct rx_desc *rxd,
534 u_char **pkt,ssize_t *pkt_len)
535 {
536 ssize_t len1,len2,cp_len;
537
538 /* get rbs1 and rbs2 */
539 len1 = rxd->rdes[1] & DEC21140_RXDESC_LEN_MASK;
540 len2 = (rxd->rdes[1] >> 10) & DEC21140_RXDESC_LEN_MASK;
541
542 /* try with buffer #1 */
543 if (len1 != 0)
544 {
545 /* compute the data length to copy */
546 cp_len = m_min(len1,*pkt_len);
547
548 /* copy packet data to the VM physical RAM */
549 physmem_copy_to_vm(d->vm,*pkt,rxd->rdes[2],cp_len);
550
551 *pkt += cp_len;
552 *pkt_len -= cp_len;
553 }
554
555 /* try with buffer #2 */
556 if ((len2 != 0) && !(rxd->rdes[1] & DEC21140_RXDESC_RCH))
557 {
558 /* compute the data length to copy */
559 cp_len = m_min(len2,*pkt_len);
560
561 /* copy packet data to the VM physical RAM */
562 physmem_copy_to_vm(d->vm,*pkt,rxd->rdes[3],cp_len);
563
564 *pkt += cp_len;
565 *pkt_len -= cp_len;
566 }
567 }
568
569 /*
570 * Put a packet in the RX ring of the DEC21140.
571 */
572 static int dev_dec21140_receive_pkt(struct dec21140_data *d,
573 u_char *pkt,ssize_t pkt_len)
574 {
575 m_uint32_t rx_start,rxdn_addr,rxdn_rdes0;
576 struct rx_desc rxd0,rxdn,*rxdc;
577 ssize_t tot_len = pkt_len;
578 u_char *pkt_ptr = pkt;
579 n_eth_hdr_t *hdr;
580 int i;
581
582 /* Truncate the packet if it is too big */
583 pkt_len = m_min(pkt_len,DEC21140_MAX_PKT_SIZE);
584
585 /* Copy the current rxring descriptor */
586 rxdesc_read(d,d->rx_current,&rxd0);
587
588 /* We must have the first descriptor... */
589 if (!rxdesc_acquire(rxd0.rdes[0]))
590 return(FALSE);
591
592 /* Remember the first RX descriptor address */
593 rx_start = d->rx_current;
594
595 for(i=0,rxdc=&rxd0;tot_len>0;i++)
596 {
597 /* Put data into the descriptor buffers */
598 rxdesc_put_pkt(d,rxdc,&pkt_ptr,&tot_len);
599
600 /* Get address of the next descriptor */
601 rxdn_addr = rxdesc_get_next(d,d->rx_current,rxdc);
602
603 /* We have finished if the complete packet has been stored */
604 if (tot_len == 0) {
605 rxdc->rdes[0] = DEC21140_RXDESC_LS;
606 rxdc->rdes[0] |= (pkt_len + 4) << DEC21140_RXDESC_FL_SHIFT;
607
608 /* if this is a multicast frame, set the appropriate bit */
609 hdr = (n_eth_hdr_t *)pkt;
610 if (eth_addr_is_mcast(&hdr->daddr))
611 rxdc->rdes[0] |= DEC21140_RXDESC_MF;
612
613 if (i != 0)
614 physmem_copy_u32_to_vm(d->vm,d->rx_current,rxdc->rdes[0]);
615
616 d->rx_current = rxdn_addr;
617 break;
618 }
619
620 /* Get status of the next descriptor to see if we can acquire it */
621 rxdn_rdes0 = physmem_copy_u32_from_vm(d->vm,rxdn_addr);
622
623 if (!rxdesc_acquire(rxdn_rdes0))
624 rxdc->rdes[0] = DEC21140_RXDESC_LS | DEC21140_RXDESC_DE;
625 else
626 rxdc->rdes[0] = 0; /* ok, no special flag */
627
628 /* Update the new status (only if we are not on the first desc) */
629 if (i != 0)
630 physmem_copy_u32_to_vm(d->vm,d->rx_current,rxdc->rdes[0]);
631
632 /* Update the RX pointer */
633 d->rx_current = rxdn_addr;
634
635 if (rxdc->rdes[0] != 0)
636 break;
637
638 /* Read the next descriptor from VM physical RAM */
639 rxdesc_read(d,rxdn_addr,&rxdn);
640 rxdc = &rxdn;
641 }
642
643 /* Update the first RX descriptor */
644 rxd0.rdes[0] |= DEC21140_RXDESC_FS;
645 physmem_copy_u32_to_vm(d->vm,rx_start,rxd0.rdes[0]);
646
647 /* Indicate that we have a frame ready */
648 d->csr[5] |= DEC21140_CSR5_RI;
649
650 /* Generate IRQ on CPU */
651 pci_dev_trigger_irq(d->vm,d->pci_dev);
652 return(TRUE);
653 }
654
655 /* Handle the DEC21140 RX ring */
656 static int dev_dec21140_handle_rxring(netio_desc_t *nio,
657 u_char *pkt,ssize_t pkt_len,
658 struct dec21140_data *d)
659 {
660 /*
661 * Don't start receive if the RX ring address has not been set
662 * and if the SR bit in CSR6 is not set yet.
663 */
664 if ((d->csr[3] == 0) || !(d->csr[6] & DEC21140_CSR6_START_RX))
665 return(FALSE);
666
667 #if DEBUG_RECEIVE
668 DEC21140_LOG(d,"receiving a packet of %d bytes\n",pkt_len);
669 mem_dump(log_file,pkt,pkt_len);
670 #endif
671
672 /*
673 * Receive only multicast/broadcast trafic + unicast traffic
674 * for this virtual machine.
675 */
676 if (dec21140_handle_mac_addr(d,pkt))
677 return(dev_dec21140_receive_pkt(d,pkt,pkt_len));
678
679 return(FALSE);
680 }
681
682 /* Read a TX descriptor */
683 static void txdesc_read(struct dec21140_data *d,m_uint32_t txd_addr,
684 struct tx_desc *txd)
685 {
686 /* get the descriptor from VM physical RAM */
687 physmem_copy_from_vm(d->vm,txd,txd_addr,sizeof(struct tx_desc));
688
689 /* byte-swapping */
690 txd->tdes[0] = vmtoh32(txd->tdes[0]);
691 txd->tdes[1] = vmtoh32(txd->tdes[1]);
692 txd->tdes[2] = vmtoh32(txd->tdes[2]);
693 txd->tdes[3] = vmtoh32(txd->tdes[3]);
694 }
695
696 /* Set the address of the next TX descriptor */
697 static void txdesc_set_next(struct dec21140_data *d,struct tx_desc *txd)
698 {
699 if (txd->tdes[1] & DEC21140_TXDESC_TER)
700 d->tx_current = d->csr[4];
701 else {
702 if (txd->tdes[1] & DEC21140_TXDESC_TCH)
703 d->tx_current = txd->tdes[3];
704 else
705 d->tx_current += sizeof(struct tx_desc);
706 }
707 }
708
709 /* Handle the TX ring (single packet) */
710 static int dev_dec21140_handle_txring_single(struct dec21140_data *d)
711 {
712 u_char pkt[DEC21140_MAX_PKT_SIZE],*pkt_ptr;
713 u_char setup_frame[DEC21140_SETUP_FRAME_SIZE];
714 m_uint32_t tx_start,len1,len2,clen,tot_len;
715 struct tx_desc txd0,ctxd,*ptxd;
716 int done = FALSE;
717
718 /*
719 * Don't start transmit if the txring address has not been set
720 * and if the ST bit in CSR6 is not set yet.
721 */
722 if ((d->csr[4] == 0) || (!(d->csr[6] & DEC21140_CSR6_START_TX)))
723 return(FALSE);
724
725 /* Copy the current txring descriptor */
726 tx_start = d->tx_current;
727 ptxd = &txd0;
728 txdesc_read(d,tx_start,ptxd);
729
730 /* If we don't own the first descriptor, we cannot transmit */
731 if (!(txd0.tdes[0] & DEC21140_TXDESC_OWN))
732 return(FALSE);
733
734 /*
735 * Ignore setup frames (clear the own bit and skip).
736 * We extract unicast MAC addresses to allow only appropriate traffic
737 * to pass.
738 */
739 if (!(txd0.tdes[1] & (DEC21140_TXDESC_FS|DEC21140_TXDESC_LS)))
740 {
741 len1 = ptxd->tdes[1] & DEC21140_TXDESC_LEN_MASK;
742 len2 = (ptxd->tdes[1] >> 11) & DEC21140_TXDESC_LEN_MASK;
743
744 if (txd0.tdes[1] & DEC21140_TXDESC_SET) {
745 physmem_copy_from_vm(d->vm,setup_frame,ptxd->tdes[2],
746 sizeof(setup_frame));
747 dec21140_update_mac_addr(d,setup_frame);
748 }
749
750 txdesc_set_next(d,ptxd);
751 goto clear_txd0_own_bit;
752 }
753
754 #if DEBUG_TRANSMIT
755 DEC21140_LOG(d,"dec21140_handle_txring: 1st desc: "
756 "tdes[0]=0x%x, tdes[1]=0x%x, tdes[2]=0x%x, tdes[3]=0x%x\n",
757 ptxd->tdes[0],ptxd->tdes[1],ptxd->tdes[2],ptxd->tdes[3]);
758 #endif
759
760 /* Empty packet for now */
761 pkt_ptr = pkt;
762 tot_len = 0;
763
764 do {
765 #if DEBUG_TRANSMIT
766 DEC21140_LOG(d,"dec21140_handle_txring: loop: "
767 "tdes[0]=0x%x, tdes[1]=0x%x, tdes[2]=0x%x, tdes[3]=0x%x\n",
768 ptxd->tdes[0],ptxd->tdes[1],ptxd->tdes[2],ptxd->tdes[3]);
769 #endif
770
771 if (!(ptxd->tdes[0] & DEC21140_TXDESC_OWN)) {
772 DEC21140_LOG(d,"dec21140_handle_txring: descriptor not owned!\n");
773 return(FALSE);
774 }
775
776 len1 = ptxd->tdes[1] & DEC21140_TXDESC_LEN_MASK;
777 len2 = (ptxd->tdes[1] >> 11) & DEC21140_TXDESC_LEN_MASK;
778 clen = len1 + len2;
779
780 /* Be sure that we have either len1 or len2 not null */
781 if (clen != 0)
782 {
783 if (len1 != 0)
784 physmem_copy_from_vm(d->vm,pkt_ptr,ptxd->tdes[2],len1);
785
786 if ((len2 != 0) && !(ptxd->tdes[1] & DEC21140_TXDESC_TCH))
787 physmem_copy_from_vm(d->vm,pkt_ptr+len1,ptxd->tdes[3],len2);
788 }
789
790 pkt_ptr += clen;
791 tot_len += clen;
792
793 /* Clear the OWN bit if this is not the first descriptor */
794 if (!(ptxd->tdes[1] & DEC21140_TXDESC_FS))
795 physmem_copy_u32_to_vm(d->vm,d->tx_current,0);
796
797 /* Go to the next descriptor */
798 txdesc_set_next(d,ptxd);
799
800 /*
801 * Copy the next txring descriptor (ignore setup frames that
802 * have both FS and LS bit cleared).
803 */
804 if (!(ptxd->tdes[1] & (DEC21140_TXDESC_LS|DEC21140_TXDESC_SET))) {
805 txdesc_read(d,d->tx_current,&ctxd);
806 ptxd = &ctxd;
807 } else
808 done = TRUE;
809 }while(!done);
810
811 if (tot_len != 0) {
812 #if DEBUG_TRANSMIT
813 DEC21140_LOG(d,"sending packet of %u bytes\n",tot_len);
814 mem_dump(log_file,pkt,tot_len);
815 #endif
816 /* rewrite ISL header if required */
817 dec21140_isl_rewrite(pkt,tot_len);
818
819 /* send it on wire */
820 netio_send(d->nio,pkt,tot_len);
821 }
822
823 clear_txd0_own_bit:
824 /* Clear the OWN flag of the first descriptor */
825 physmem_copy_u32_to_vm(d->vm,tx_start,0);
826
827 /* Interrupt on completion ? */
828 if (!(txd0.tdes[1] & DEC21140_TXDESC_IC)) {
829 d->csr[5] |= DEC21140_CSR5_TI;
830 pci_dev_trigger_irq(d->vm,d->pci_dev);
831 }
832
833 return(TRUE);
834 }
835
836 /* Handle the TX ring */
837 static int dev_dec21140_handle_txring(struct dec21140_data *d)
838 {
839 int i;
840
841 for(i=0;i<DEC21140_TXRING_PASS_COUNT;i++)
842 if (!dev_dec21140_handle_txring_single(d))
843 break;
844
845 return(TRUE);
846 }
847
848 /*
849 * pci_dec21140_read()
850 *
851 * Read a PCI register.
852 */
853 static m_uint32_t pci_dec21140_read(cpu_mips_t *cpu,struct pci_device *dev,
854 int reg)
855 {
856 struct dec21140_data *d = dev->priv_data;
857
858 #if DEBUG_PCI_REGS
859 DEC21140_LOG(d,"read C%s(%u)\n",pci_cfgreg_name(reg),reg);
860 #endif
861
862 switch (reg) {
863 case DEC21140_PCI_CFID_REG_OFFSET:
864 return(0x00091011);
865 case DEC21140_PCI_CFRV_REG_OFFSET:
866 return(0x02000011);
867 case DEC21140_PCI_CBMA_REG_OFFSET:
868 return(d->dev->phys_addr);
869 default:
870 return(0);
871 }
872 }
873
874 /*
875 * pci_dec21140_write()
876 *
877 * Write a PCI register.
878 */
879 static void pci_dec21140_write(cpu_mips_t *cpu,struct pci_device *dev,
880 int reg,m_uint32_t value)
881 {
882 struct dec21140_data *d = dev->priv_data;
883
884 #if DEBUG_PCI_REGS
885 DEC21140_LOG(d,"write C%s(%u) value 0x%x\n",pci_cfgreg_name(reg),reg,value);
886 #endif
887
888 switch(reg) {
889 case DEC21140_PCI_CBMA_REG_OFFSET:
890 vm_map_device(cpu->vm,d->dev,(m_uint64_t)value);
891 DEC21140_LOG(d,"registers are mapped at 0x%x\n",value);
892 break;
893 }
894 }
895
896 /*
897 * dev_dec21140_init()
898 *
899 * Generic DEC21140 initialization code.
900 */
901 struct dec21140_data *dev_dec21140_init(vm_instance_t *vm,char *name,
902 struct pci_bus *pci_bus,int pci_device,
903 int irq)
904 {
905 struct dec21140_data *d;
906 struct pci_device *pci_dev;
907 struct vdevice *dev;
908
909 /* Allocate the private data structure for DEC21140 */
910 if (!(d = malloc(sizeof(*d)))) {
911 fprintf(stderr,"%s (DEC21140): out of memory\n",name);
912 return NULL;
913 }
914
915 memset(d,0,sizeof(*d));
916
917 /* Add as PCI device */
918 pci_dev = pci_dev_add(pci_bus,name,
919 DEC21140_PCI_VENDOR_ID,DEC21140_PCI_PRODUCT_ID,
920 pci_device,0,irq,
921 d,NULL,pci_dec21140_read,pci_dec21140_write);
922
923 if (!pci_dev) {
924 fprintf(stderr,"%s (DEC21140): unable to create PCI device.\n",name);
925 goto err_pci_dev;
926 }
927
928 /* Create the device itself */
929 if (!(dev = dev_create(name))) {
930 fprintf(stderr,"%s (DEC21140): unable to create device.\n",name);
931 goto err_dev;
932 }
933
934 d->name = name;
935 d->vm = vm;
936 d->pci_dev = pci_dev;
937 d->dev = dev;
938
939 /* Basic register setup */
940 d->csr[0] = 0xfff80000;
941 d->csr[5] = 0xfc000000;
942 d->csr[8] = 0xfffe0000;
943
944 dev->phys_addr = 0;
945 dev->phys_len = 0x20000;
946 dev->handler = dev_dec21140_access;
947 dev->priv_data = d;
948 return(d);
949
950 err_dev:
951 pci_dev_remove(pci_dev);
952 err_pci_dev:
953 free(d);
954 return NULL;
955 }
956
957 /* Remove a DEC21140 device */
958 void dev_dec21140_remove(struct dec21140_data *d)
959 {
960 if (d != NULL) {
961 pci_dev_remove(d->pci_dev);
962 vm_unbind_device(d->vm,d->dev);
963 cpu_group_rebuild_mts(d->vm->cpu_group);
964 free(d->dev);
965 free(d);
966 }
967 }
968
969 /* Bind a NIO to DEC21140 device */
970 int dev_dec21140_set_nio(struct dec21140_data *d,netio_desc_t *nio)
971 {
972 /* check that a NIO is not already bound */
973 if (d->nio != NULL)
974 return(-1);
975
976 d->nio = nio;
977 d->tx_tid = ptask_add((ptask_callback)dev_dec21140_handle_txring,d,NULL);
978 netio_rxl_add(nio,(netio_rx_handler_t)dev_dec21140_handle_rxring,d,NULL);
979 return(0);
980 }
981
982 /* Unbind a NIO from a DEC21140 device */
983 void dev_dec21140_unset_nio(struct dec21140_data *d)
984 {
985 if (d->nio != NULL) {
986 ptask_remove(d->tx_tid);
987 netio_rxl_remove(d->nio);
988 d->nio = NULL;
989 }
990 }

  ViewVC Help
Powered by ViewVC 1.1.26