/[pearpc]/src/tools/crc32.cc
This is repository of my old source code which isn't updated any more. Go to git.rot13.org for current projects!
ViewVC logotype

Annotation of /src/tools/crc32.cc

Parent Directory Parent Directory | Revision Log Revision Log


Revision 1 - (hide annotations)
Wed Sep 5 17:11:21 2007 UTC (16 years, 7 months ago) by dpavlin
File size: 10752 byte(s)
import upstream CVS
1 dpavlin 1 /*
2     * Function for computing CRC32 for the purpose of adding to Ethernet packets.
3     *
4     */
5    
6     #include "crc32.h"
7    
8     static const uint32 crc32table[0x100] = {
9     0x00000000L, 0x77073096L, 0xee0e612cL, 0x990951baL,
10     0x076dc419L, 0x706af48fL, 0xe963a535L, 0x9e6495a3L,
11     0x0edb8832L, 0x79dcb8a4L, 0xe0d5e91eL, 0x97d2d988L,
12     0x09b64c2bL, 0x7eb17cbdL, 0xe7b82d07L, 0x90bf1d91L,
13     0x1db71064L, 0x6ab020f2L, 0xf3b97148L, 0x84be41deL,
14     0x1adad47dL, 0x6ddde4ebL, 0xf4d4b551L, 0x83d385c7L,
15     0x136c9856L, 0x646ba8c0L, 0xfd62f97aL, 0x8a65c9ecL,
16     0x14015c4fL, 0x63066cd9L, 0xfa0f3d63L, 0x8d080df5L,
17     0x3b6e20c8L, 0x4c69105eL, 0xd56041e4L, 0xa2677172L,
18     0x3c03e4d1L, 0x4b04d447L, 0xd20d85fdL, 0xa50ab56bL,
19     0x35b5a8faL, 0x42b2986cL, 0xdbbbc9d6L, 0xacbcf940L,
20     0x32d86ce3L, 0x45df5c75L, 0xdcd60dcfL, 0xabd13d59L,
21     0x26d930acL, 0x51de003aL, 0xc8d75180L, 0xbfd06116L,
22     0x21b4f4b5L, 0x56b3c423L, 0xcfba9599L, 0xb8bda50fL,
23     0x2802b89eL, 0x5f058808L, 0xc60cd9b2L, 0xb10be924L,
24     0x2f6f7c87L, 0x58684c11L, 0xc1611dabL, 0xb6662d3dL,
25     0x76dc4190L, 0x01db7106L, 0x98d220bcL, 0xefd5102aL,
26     0x71b18589L, 0x06b6b51fL, 0x9fbfe4a5L, 0xe8b8d433L,
27     0x7807c9a2L, 0x0f00f934L, 0x9609a88eL, 0xe10e9818L,
28     0x7f6a0dbbL, 0x086d3d2dL, 0x91646c97L, 0xe6635c01L,
29     0x6b6b51f4L, 0x1c6c6162L, 0x856530d8L, 0xf262004eL,
30     0x6c0695edL, 0x1b01a57bL, 0x8208f4c1L, 0xf50fc457L,
31     0x65b0d9c6L, 0x12b7e950L, 0x8bbeb8eaL, 0xfcb9887cL,
32     0x62dd1ddfL, 0x15da2d49L, 0x8cd37cf3L, 0xfbd44c65L,
33     0x4db26158L, 0x3ab551ceL, 0xa3bc0074L, 0xd4bb30e2L,
34     0x4adfa541L, 0x3dd895d7L, 0xa4d1c46dL, 0xd3d6f4fbL,
35     0x4369e96aL, 0x346ed9fcL, 0xad678846L, 0xda60b8d0L,
36     0x44042d73L, 0x33031de5L, 0xaa0a4c5fL, 0xdd0d7cc9L,
37     0x5005713cL, 0x270241aaL, 0xbe0b1010L, 0xc90c2086L,
38     0x5768b525L, 0x206f85b3L, 0xb966d409L, 0xce61e49fL,
39     0x5edef90eL, 0x29d9c998L, 0xb0d09822L, 0xc7d7a8b4L,
40     0x59b33d17L, 0x2eb40d81L, 0xb7bd5c3bL, 0xc0ba6cadL,
41     0xedb88320L, 0x9abfb3b6L, 0x03b6e20cL, 0x74b1d29aL,
42     0xead54739L, 0x9dd277afL, 0x04db2615L, 0x73dc1683L,
43     0xe3630b12L, 0x94643b84L, 0x0d6d6a3eL, 0x7a6a5aa8L,
44     0xe40ecf0bL, 0x9309ff9dL, 0x0a00ae27L, 0x7d079eb1L,
45     0xf00f9344L, 0x8708a3d2L, 0x1e01f268L, 0x6906c2feL,
46     0xf762575dL, 0x806567cbL, 0x196c3671L, 0x6e6b06e7L,
47     0xfed41b76L, 0x89d32be0L, 0x10da7a5aL, 0x67dd4accL,
48     0xf9b9df6fL, 0x8ebeeff9L, 0x17b7be43L, 0x60b08ed5L,
49     0xd6d6a3e8L, 0xa1d1937eL, 0x38d8c2c4L, 0x4fdff252L,
50     0xd1bb67f1L, 0xa6bc5767L, 0x3fb506ddL, 0x48b2364bL,
51     0xd80d2bdaL, 0xaf0a1b4cL, 0x36034af6L, 0x41047a60L,
52     0xdf60efc3L, 0xa867df55L, 0x316e8eefL, 0x4669be79L,
53     0xcb61b38cL, 0xbc66831aL, 0x256fd2a0L, 0x5268e236L,
54     0xcc0c7795L, 0xbb0b4703L, 0x220216b9L, 0x5505262fL,
55     0xc5ba3bbeL, 0xb2bd0b28L, 0x2bb45a92L, 0x5cb36a04L,
56     0xc2d7ffa7L, 0xb5d0cf31L, 0x2cd99e8bL, 0x5bdeae1dL,
57     0x9b64c2b0L, 0xec63f226L, 0x756aa39cL, 0x026d930aL,
58     0x9c0906a9L, 0xeb0e363fL, 0x72076785L, 0x05005713L,
59     0x95bf4a82L, 0xe2b87a14L, 0x7bb12baeL, 0x0cb61b38L,
60     0x92d28e9bL, 0xe5d5be0dL, 0x7cdcefb7L, 0x0bdbdf21L,
61     0x86d3d2d4L, 0xf1d4e242L, 0x68ddb3f8L, 0x1fda836eL,
62     0x81be16cdL, 0xf6b9265bL, 0x6fb077e1L, 0x18b74777L,
63     0x88085ae6L, 0xff0f6a70L, 0x66063bcaL, 0x11010b5cL,
64     0x8f659effL, 0xf862ae69L, 0x616bffd3L, 0x166ccf45L,
65     0xa00ae278L, 0xd70dd2eeL, 0x4e048354L, 0x3903b3c2L,
66     0xa7672661L, 0xd06016f7L, 0x4969474dL, 0x3e6e77dbL,
67     0xaed16a4aL, 0xd9d65adcL, 0x40df0b66L, 0x37d83bf0L,
68     0xa9bcae53L, 0xdebb9ec5L, 0x47b2cf7fL, 0x30b5ffe9L,
69     0xbdbdf21cL, 0xcabac28aL, 0x53b39330L, 0x24b4a3a6L,
70     0xbad03605L, 0xcdd70693L, 0x54de5729L, 0x23d967bfL,
71     0xb3667a2eL, 0xc4614ab8L, 0x5d681b02L, 0x2a6f2b94L,
72     0xb40bbe37L, 0xc30c8ea1L, 0x5a05df1bL, 0x2d02ef8dL
73     };
74    
75    
76     // The previous table could have been built using the following function :
77    
78     /*
79    
80     #define CRC32_POLY 0xedb88320; // this is a 0x04c11db7 reflection
81    
82     void init_crc32()
83     {
84     int i, j, b;
85     uint32 c;
86    
87     for (i = 0; i < 0x100; i++) {
88     for (c = i, j = 0; j < 8; j++) {
89     b = c & 1;
90     c >>= 1;
91     if (b)
92     c ^= CRC32_POLY;
93     }
94     crc32table[i] = c;
95     }
96     }
97     */
98    
99     // With this macro defined, the function runs about 35% faster, but the code is about 3 times bigger :
100     #define RUN_FASTER
101    
102     #define DO_CRC(b) crc = (crc >> 8) ^ crc32table[(crc & 0xff) ^ (b)]
103    
104     uint32 ether_crc(size_t len, const byte *p)
105     {
106     uint32 crc = 0xffffffff; // preload shift register, per CRC-32 spec
107    
108     for (; len>0; len--) {
109     DO_CRC(*p++);
110     }
111     return ~crc; // transmit complement, per CRC-32 spec
112     }
113    
114     /*
115     * A brief CRC tutorial.
116     *
117     * A CRC is a long-division remainder. You add the CRC to the message,
118     * and the whole thing (message+CRC) is a multiple of the given
119     * CRC polynomial. To check the CRC, you can either check that the
120     * CRC matches the recomputed value, *or* you can check that the
121     * remainder computed on the message+CRC is 0. This latter approach
122     * is used by a lot of hardware implementations, and is why so many
123     * protocols put the end-of-frame flag after the CRC.
124     *
125     * It's actually the same long division you learned in school, except that
126     * - We're working in binary, so the digits are only 0 and 1, and
127     * - When dividing polynomials, there are no carries. Rather than add and
128     * subtract, we just xor. Thus, we tend to get a bit sloppy about
129     * the difference between adding and subtracting.
130     *
131     * A 32-bit CRC polynomial is actually 33 bits long. But since it's
132     * 33 bits long, bit 32 is always going to be set, so usually the CRC
133     * is written in hex with the most significant bit omitted. (If you're
134     * familiar with the IEEE 754 floating-point format, it's the same idea.)
135     *
136     * Note that a CRC is computed over a string of *bits*, so you have
137     * to decide on the endianness of the bits within each byte. To get
138     * the best error-detecting properties, this should correspond to the
139     * order they're actually sent. For example, standard RS-232 serial is
140     * little-endian; the most significant bit (sometimes used for parity)
141     * is sent last. And when appending a CRC word to a message, you should
142     * do it in the right order, matching the endianness.
143     *
144     * Just like with ordinary division, the remainder is always smaller than
145     * the divisor (the CRC polynomial) you're dividing by. Each step of the
146     * division, you take one more digit (bit) of the dividend and append it
147     * to the current remainder. Then you figure out the appropriate multiple
148     * of the divisor to subtract to being the remainder back into range.
149     * In binary, it's easy - it has to be either 0 or 1, and to make the
150     * XOR cancel, it's just a copy of bit 32 of the remainder.
151     *
152     * When computing a CRC, we don't care about the quotient, so we can
153     * throw the quotient bit away, but subtract the appropriate multiple of
154     * the polynomial from the remainder and we're back to where we started,
155     * ready to process the next bit.
156     *
157     * A big-endian CRC written this way would be coded like:
158     * for (i = 0; i < input_bits; i++) {
159     * multiple = remainder & 0x80000000 ? CRCPOLY : 0;
160     * remainder = (remainder << 1 | next_input_bit()) ^ multiple;
161     * }
162     * Notice how, to get at bit 32 of the shifted remainder, we look
163     * at bit 31 of the remainder *before* shifting it.
164     *
165     * But also notice how the next_input_bit() bits we're shifting into
166     * the remainder don't actually affect any decision-making until
167     * 32 bits later. Thus, the first 32 cycles of this are pretty boring.
168     * Also, to add the CRC to a message, we need a 32-bit-long hole for it at
169     * the end, so we have to add 32 extra cycles shifting in zeros at the
170     * end of every message,
171     *
172     * So the standard trick is to rearrage merging in the next_input_bit()
173     * until the moment it's needed. Then the first 32 cycles can be precomputed,
174     * and merging in the final 32 zero bits to make room for the CRC can be
175     * skipped entirely.
176     * This changes the code to:
177     * for (i = 0; i < input_bits; i++) {
178     * remainder ^= next_input_bit() << 31;
179     * multiple = (remainder & 0x80000000) ? CRCPOLY : 0;
180     * remainder = (remainder << 1) ^ multiple;
181     * }
182     * With this optimization, the little-endian code is simpler:
183     * for (i = 0; i < input_bits; i++) {
184     * remainder ^= next_input_bit();
185     * multiple = (remainder & 1) ? CRCPOLY : 0;
186     * remainder = (remainder >> 1) ^ multiple;
187     * }
188     *
189     * Note that the other details of endianness have been hidden in CRCPOLY
190     * (which must be bit-reversed) and next_input_bit().
191     *
192     * However, as long as next_input_bit is returning the bits in a sensible
193     * order, we can actually do the merging 8 or more bits at a time rather
194     * than one bit at a time:
195     * for (i = 0; i < input_bytes; i++) {
196     * remainder ^= next_input_byte() << 24;
197     * for (j = 0; j < 8; j++) {
198     * multiple = (remainder & 0x80000000) ? CRCPOLY : 0;
199     * remainder = (remainder << 1) ^ multiple;
200     * }
201     * }
202     * Or in little-endian:
203     * for (i = 0; i < input_bytes; i++) {
204     * remainder ^= next_input_byte();
205     * for (j = 0; j < 8; j++) {
206     * multiple = (remainder & 1) ? CRCPOLY : 0;
207     * remainder = (remainder >> 1) ^ multiple;
208     * }
209     * }
210     * If the input is a multiple of 32 bits, you can even XOR in a 32-bit
211     * word at a time and increase the inner loop count to 32.
212     *
213     * You can also mix and match the two loop styles, for example doing the
214     * bulk of a message byte-at-a-time and adding bit-at-a-time processing
215     * for any fractional bytes at the end.
216     *
217     * The only remaining optimization is to the byte-at-a-time table method.
218     * Here, rather than just shifting one bit of the remainder to decide
219     * in the correct multiple to subtract, we can shift a byte at a time.
220     * This produces a 40-bit (rather than a 33-bit) intermediate remainder,
221     * but again the multiple of the polynomial to subtract depends only on
222     * the high bits, the high 8 bits in this case.
223     *
224     * The multile we need in that case is the low 32 bits of a 40-bit
225     * value whose high 8 bits are given, and which is a multiple of the
226     * generator polynomial. This is simply the CRC-32 of the given
227     * one-byte message.
228     *
229     * Two more details: normally, appending zero bits to a message which
230     * is already a multiple of a polynomial produces a larger multiple of that
231     * polynomial. To enable a CRC to detect this condition, it's common to
232     * invert the CRC before appending it. This makes the remainder of the
233     * message+crc come out not as zero, but some fixed non-zero value.
234     *
235     * The same problem applies to zero bits prepended to the message, and
236     * a similar solution is used. Instead of starting with a remainder of
237     * 0, an initial remainder of all ones is used. As long as you start
238     * the same way on decoding, it doesn't make a difference.
239     */

  ViewVC Help
Powered by ViewVC 1.1.26