/[gxemul]/upstream/0.4.0.1/src/memory.c
This is repository of my old source code which isn't updated any more. Go to git.rot13.org for current projects!
ViewVC logotype

Contents of /upstream/0.4.0.1/src/memory.c

Parent Directory Parent Directory | Revision Log Revision Log


Revision 27 - (show annotations)
Mon Oct 8 16:20:18 2007 UTC (16 years, 7 months ago) by dpavlin
File MIME type: text/plain
File size: 17036 byte(s)
0.4.0.1
1 /*
2 * Copyright (C) 2003-2006 Anders Gavare. All rights reserved.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions are met:
6 *
7 * 1. Redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer.
9 * 2. Redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution.
12 * 3. The name of the author may not be used to endorse or promote products
13 * derived from this software without specific prior written permission.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 *
27 *
28 * $Id: memory.c,v 1.190 2006/06/16 18:31:25 debug Exp $
29 *
30 * Functions for handling the memory of an emulated machine.
31 */
32
33 #include <stdio.h>
34 #include <stdlib.h>
35 #include <string.h>
36 #include <sys/types.h>
37 #include <sys/mman.h>
38
39 #include "cpu.h"
40 #include "machine.h"
41 #include "memory.h"
42 #include "misc.h"
43
44
45 extern int verbose;
46
47
48 /*
49 * memory_readmax64():
50 *
51 * Read at most 64 bits of data from a buffer. Length is given by
52 * len, and the byte order by cpu->byte_order.
53 *
54 * This function should not be called with cpu == NULL.
55 */
56 uint64_t memory_readmax64(struct cpu *cpu, unsigned char *buf, int len)
57 {
58 int i, byte_order = cpu->byte_order;
59 uint64_t x = 0;
60
61 if (len & MEM_PCI_LITTLE_ENDIAN) {
62 len &= ~MEM_PCI_LITTLE_ENDIAN;
63 byte_order = EMUL_LITTLE_ENDIAN;
64 }
65
66 /* Switch byte order for incoming data, if necessary: */
67 if (byte_order == EMUL_BIG_ENDIAN)
68 for (i=0; i<len; i++) {
69 x <<= 8;
70 x |= buf[i];
71 }
72 else
73 for (i=len-1; i>=0; i--) {
74 x <<= 8;
75 x |= buf[i];
76 }
77
78 return x;
79 }
80
81
82 /*
83 * memory_writemax64():
84 *
85 * Write at most 64 bits of data to a buffer. Length is given by
86 * len, and the byte order by cpu->byte_order.
87 *
88 * This function should not be called with cpu == NULL.
89 */
90 void memory_writemax64(struct cpu *cpu, unsigned char *buf, int len,
91 uint64_t data)
92 {
93 int i, byte_order = cpu->byte_order;
94
95 if (len & MEM_PCI_LITTLE_ENDIAN) {
96 len &= ~MEM_PCI_LITTLE_ENDIAN;
97 byte_order = EMUL_LITTLE_ENDIAN;
98 }
99
100 if (byte_order == EMUL_LITTLE_ENDIAN)
101 for (i=0; i<len; i++) {
102 buf[i] = data & 255;
103 data >>= 8;
104 }
105 else
106 for (i=0; i<len; i++) {
107 buf[len - 1 - i] = data & 255;
108 data >>= 8;
109 }
110 }
111
112
113 /*
114 * zeroed_alloc():
115 *
116 * Allocates a block of memory using mmap(), and if that fails, try
117 * malloc() + memset(). The returned memory block contains only zeroes.
118 */
119 void *zeroed_alloc(size_t s)
120 {
121 void *p = mmap(NULL, s, PROT_READ | PROT_WRITE,
122 MAP_ANON | MAP_PRIVATE, -1, 0);
123 if (p == NULL) {
124 p = malloc(s);
125 if (p == NULL) {
126 fprintf(stderr, "out of memory\n");
127 exit(1);
128 }
129 memset(p, 0, s);
130 }
131 return p;
132 }
133
134
135 /*
136 * memory_new():
137 *
138 * This function creates a new memory object. An emulated machine needs one
139 * of these.
140 */
141 struct memory *memory_new(uint64_t physical_max, int arch)
142 {
143 struct memory *mem;
144 int bits_per_pagetable = BITS_PER_PAGETABLE;
145 int bits_per_memblock = BITS_PER_MEMBLOCK;
146 int entries_per_pagetable = 1 << BITS_PER_PAGETABLE;
147 int max_bits = MAX_BITS;
148 size_t s;
149
150 mem = malloc(sizeof(struct memory));
151 if (mem == NULL) {
152 fprintf(stderr, "out of memory\n");
153 exit(1);
154 }
155
156 memset(mem, 0, sizeof(struct memory));
157
158 /* Check bits_per_pagetable and bits_per_memblock for sanity: */
159 if (bits_per_pagetable + bits_per_memblock != max_bits) {
160 fprintf(stderr, "memory_new(): bits_per_pagetable and "
161 "bits_per_memblock mismatch\n");
162 exit(1);
163 }
164
165 mem->physical_max = physical_max;
166 mem->dev_dyntrans_alignment = 4095;
167 if (arch == ARCH_ALPHA)
168 mem->dev_dyntrans_alignment = 8191;
169
170 s = entries_per_pagetable * sizeof(void *);
171
172 mem->pagetable = (unsigned char *) mmap(NULL, s,
173 PROT_READ | PROT_WRITE, MAP_ANON | MAP_PRIVATE, -1, 0);
174 if (mem->pagetable == NULL) {
175 mem->pagetable = malloc(s);
176 if (mem->pagetable == NULL) {
177 fprintf(stderr, "out of memory\n");
178 exit(1);
179 }
180 memset(mem->pagetable, 0, s);
181 }
182
183 mem->mmap_dev_minaddr = 0xffffffffffffffffULL;
184 mem->mmap_dev_maxaddr = 0;
185
186 return mem;
187 }
188
189
190 /*
191 * memory_points_to_string():
192 *
193 * Returns 1 if there's something string-like in emulated memory at address
194 * addr, otherwise 0.
195 */
196 int memory_points_to_string(struct cpu *cpu, struct memory *mem, uint64_t addr,
197 int min_string_length)
198 {
199 int cur_length = 0;
200 unsigned char c;
201
202 for (;;) {
203 c = '\0';
204 cpu->memory_rw(cpu, mem, addr+cur_length,
205 &c, sizeof(c), MEM_READ, CACHE_NONE | NO_EXCEPTIONS);
206 if (c=='\n' || c=='\t' || c=='\r' || (c>=' ' && c<127)) {
207 cur_length ++;
208 if (cur_length >= min_string_length)
209 return 1;
210 } else {
211 if (cur_length >= min_string_length)
212 return 1;
213 else
214 return 0;
215 }
216 }
217 }
218
219
220 /*
221 * memory_conv_to_string():
222 *
223 * Convert emulated memory contents to a string, placing it in a buffer
224 * provided by the caller.
225 */
226 char *memory_conv_to_string(struct cpu *cpu, struct memory *mem, uint64_t addr,
227 char *buf, int bufsize)
228 {
229 int len = 0;
230 int output_index = 0;
231 unsigned char c, p='\0';
232
233 while (output_index < bufsize-1) {
234 c = '\0';
235 cpu->memory_rw(cpu, mem, addr+len, &c, sizeof(c), MEM_READ,
236 CACHE_NONE | NO_EXCEPTIONS);
237 buf[output_index] = c;
238 if (c>=' ' && c<127) {
239 len ++;
240 output_index ++;
241 } else if (c=='\n' || c=='\r' || c=='\t') {
242 len ++;
243 buf[output_index] = '\\';
244 output_index ++;
245 switch (c) {
246 case '\n': p = 'n'; break;
247 case '\r': p = 'r'; break;
248 case '\t': p = 't'; break;
249 }
250 if (output_index < bufsize-1) {
251 buf[output_index] = p;
252 output_index ++;
253 }
254 } else {
255 buf[output_index] = '\0';
256 return buf;
257 }
258 }
259
260 buf[bufsize-1] = '\0';
261 return buf;
262 }
263
264
265 /*
266 * memory_device_dyntrans_access():
267 *
268 * Get the lowest and highest dyntrans access since last time.
269 */
270 void memory_device_dyntrans_access(struct cpu *cpu, struct memory *mem,
271 void *extra, uint64_t *low, uint64_t *high)
272 {
273 size_t s;
274 int i, need_inval = 0;
275
276 /* TODO: This is O(n), so it might be good to rewrite it some day.
277 For now, it will be enough, as long as this function is not
278 called too often. */
279
280 for (i=0; i<mem->n_mmapped_devices; i++) {
281 if (mem->dev_extra[i] == extra &&
282 mem->dev_flags[i] & DM_DYNTRANS_WRITE_OK &&
283 mem->dev_dyntrans_data[i] != NULL) {
284 if (mem->dev_dyntrans_write_low[i] != (uint64_t) -1)
285 need_inval = 1;
286 if (low != NULL)
287 *low = mem->dev_dyntrans_write_low[i];
288 mem->dev_dyntrans_write_low[i] = (uint64_t) -1;
289
290 if (high != NULL)
291 *high = mem->dev_dyntrans_write_high[i];
292 mem->dev_dyntrans_write_high[i] = 0;
293
294 if (!need_inval)
295 return;
296
297 /* Invalidate any pages of this device that might
298 be in the dyntrans load/store cache, by marking
299 the pages read-only. */
300 if (cpu->invalidate_translation_caches != NULL) {
301 for (s=0; s<mem->dev_length[i];
302 s+=cpu->machine->arch_pagesize)
303 cpu->invalidate_translation_caches
304 (cpu, mem->dev_baseaddr[i] + s,
305 JUST_MARK_AS_NON_WRITABLE
306 | INVALIDATE_PADDR);
307 }
308
309 return;
310 }
311 }
312 }
313
314
315 /*
316 * memory_device_register():
317 *
318 * Register a (memory mapped) device by adding it to the dev_* fields of a
319 * memory struct.
320 */
321 void memory_device_register(struct memory *mem, const char *device_name,
322 uint64_t baseaddr, uint64_t len,
323 int (*f)(struct cpu *,struct memory *,uint64_t,unsigned char *,
324 size_t,int,void *),
325 void *extra, int flags, unsigned char *dyntrans_data)
326 {
327 int i, newi = 0;
328
329 if (mem->n_mmapped_devices >= MAX_DEVICES) {
330 fprintf(stderr, "memory_device_register(): too many "
331 "devices registered, cannot register '%s'\n", device_name);
332 exit(1);
333 }
334
335 /*
336 * Figure out at which index to insert this device, and simultaneously
337 * check for collisions:
338 */
339 newi = -1;
340 for (i=0; i<mem->n_mmapped_devices; i++) {
341 if (i == 0 && baseaddr + len <= mem->dev_baseaddr[i])
342 newi = i;
343 if (i > 0 && baseaddr + len <= mem->dev_baseaddr[i] &&
344 baseaddr >= mem->dev_endaddr[i-1])
345 newi = i;
346 if (i == mem->n_mmapped_devices - 1 &&
347 baseaddr >= mem->dev_endaddr[i])
348 newi = i + 1;
349
350 /* If we are not colliding with device i, then continue: */
351 if (baseaddr + len <= mem->dev_baseaddr[i])
352 continue;
353 if (baseaddr >= mem->dev_endaddr[i])
354 continue;
355
356 fatal("\nERROR! \"%s\" collides with device %i (\"%s\")!\n",
357 device_name, i, mem->dev_name[i]);
358 exit(1);
359 }
360 if (mem->n_mmapped_devices == 0)
361 newi = 0;
362 if (newi == -1) {
363 fatal("INTERNAL ERROR\n");
364 exit(1);
365 }
366
367 if (verbose >= 2) {
368 /* (40 bits of physical address is displayed) */
369 debug("device at 0x%010"PRIx64": %s", (uint64_t) baseaddr,
370 device_name);
371
372 if (flags & (DM_DYNTRANS_OK | DM_DYNTRANS_WRITE_OK)
373 && (baseaddr & mem->dev_dyntrans_alignment) != 0) {
374 fatal("\nWARNING: Device dyntrans access, but unaligned"
375 " baseaddr 0x%"PRIx64".\n", (uint64_t) baseaddr);
376 }
377
378 if (flags & (DM_DYNTRANS_OK | DM_DYNTRANS_WRITE_OK)) {
379 debug(" (dyntrans %s)",
380 (flags & DM_DYNTRANS_WRITE_OK)? "R/W" : "R");
381 }
382 debug("\n");
383 }
384
385 for (i=0; i<mem->n_mmapped_devices; i++) {
386 if (dyntrans_data == mem->dev_dyntrans_data[i] &&
387 mem->dev_flags[i] & (DM_DYNTRANS_OK | DM_DYNTRANS_WRITE_OK)
388 && flags & (DM_DYNTRANS_OK | DM_DYNTRANS_WRITE_OK)) {
389 fatal("ERROR: the data pointer used for dyntrans "
390 "accesses must only be used once!\n");
391 fatal("(%p cannot be used by '%s'; already in use by '"
392 "%s')\n", dyntrans_data, device_name,
393 mem->dev_name[i]);
394 exit(1);
395 }
396 }
397
398 mem->n_mmapped_devices++;
399
400 /*
401 * YUCK! This is ugly. TODO: fix
402 */
403 /* Make space for the new entry: */
404 memmove(&mem->dev_name[newi+1], &mem->dev_name[newi], sizeof(char *) *
405 (MAX_DEVICES - newi - 1));
406 memmove(&mem->dev_baseaddr[newi+1], &mem->dev_baseaddr[newi],
407 sizeof(uint64_t) * (MAX_DEVICES - newi - 1));
408 memmove(&mem->dev_endaddr[newi+1], &mem->dev_endaddr[newi],
409 sizeof(uint64_t) * (MAX_DEVICES - newi - 1));
410 memmove(&mem->dev_length[newi+1], &mem->dev_length[newi],
411 sizeof(uint64_t) * (MAX_DEVICES - newi - 1));
412 memmove(&mem->dev_flags[newi+1], &mem->dev_flags[newi], sizeof(int) *
413 (MAX_DEVICES - newi - 1));
414 memmove(&mem->dev_extra[newi+1], &mem->dev_extra[newi], sizeof(void *) *
415 (MAX_DEVICES - newi - 1));
416 memmove(&mem->dev_f[newi+1], &mem->dev_f[newi], sizeof(void *) *
417 (MAX_DEVICES - newi - 1));
418 memmove(&mem->dev_dyntrans_data[newi+1], &mem->dev_dyntrans_data[newi],
419 sizeof(void *) * (MAX_DEVICES - newi - 1));
420 memmove(&mem->dev_dyntrans_write_low[newi+1],
421 &mem->dev_dyntrans_write_low[newi],
422 sizeof(uint64_t) * (MAX_DEVICES - newi - 1));
423 memmove(&mem->dev_dyntrans_write_high[newi+1],
424 &mem->dev_dyntrans_write_high[newi],
425 sizeof(uint64_t) * (MAX_DEVICES - newi - 1));
426
427
428 mem->dev_name[newi] = strdup(device_name);
429 mem->dev_baseaddr[newi] = baseaddr;
430 mem->dev_endaddr[newi] = baseaddr + len;
431 mem->dev_length[newi] = len;
432 mem->dev_flags[newi] = flags;
433 mem->dev_dyntrans_data[newi] = dyntrans_data;
434
435 if (mem->dev_name[newi] == NULL) {
436 fprintf(stderr, "out of memory\n");
437 exit(1);
438 }
439
440 if (flags & (DM_DYNTRANS_OK | DM_DYNTRANS_WRITE_OK)
441 && !(flags & DM_EMULATED_RAM) && dyntrans_data == NULL) {
442 fatal("\nERROR: Device dyntrans access, but dyntrans_data"
443 " = NULL!\n");
444 exit(1);
445 }
446
447 if ((size_t)dyntrans_data & (sizeof(void *) - 1)) {
448 fprintf(stderr, "memory_device_register():"
449 " dyntrans_data not aligned correctly (%p)\n",
450 dyntrans_data);
451 exit(1);
452 }
453
454 mem->dev_dyntrans_write_low[newi] = (uint64_t)-1;
455 mem->dev_dyntrans_write_high[newi] = 0;
456 mem->dev_f[newi] = f;
457 mem->dev_extra[newi] = extra;
458
459 if (baseaddr < mem->mmap_dev_minaddr)
460 mem->mmap_dev_minaddr = baseaddr & ~mem->dev_dyntrans_alignment;
461 if (baseaddr + len > mem->mmap_dev_maxaddr)
462 mem->mmap_dev_maxaddr = (((baseaddr + len) - 1) |
463 mem->dev_dyntrans_alignment) + 1;
464 }
465
466
467 /*
468 * memory_device_remove():
469 *
470 * Unregister a (memory mapped) device from a memory struct.
471 */
472 void memory_device_remove(struct memory *mem, int i)
473 {
474 if (i < 0 || i >= mem->n_mmapped_devices) {
475 fatal("memory_device_remove(): invalid device number %i\n", i);
476 return;
477 }
478
479 mem->n_mmapped_devices --;
480
481 if (i == mem->n_mmapped_devices)
482 return;
483
484 /*
485 * YUCK! This is ugly. TODO: fix
486 */
487
488 memmove(&mem->dev_name[i], &mem->dev_name[i+1], sizeof(char *) *
489 (MAX_DEVICES - i - 1));
490 memmove(&mem->dev_baseaddr[i], &mem->dev_baseaddr[i+1],
491 sizeof(uint64_t) * (MAX_DEVICES - i - 1));
492 memmove(&mem->dev_endaddr[i], &mem->dev_endaddr[i+1],
493 sizeof(uint64_t) * (MAX_DEVICES - i - 1));
494 memmove(&mem->dev_length[i], &mem->dev_length[i+1], sizeof(uint64_t) *
495 (MAX_DEVICES - i - 1));
496 memmove(&mem->dev_flags[i], &mem->dev_flags[i+1], sizeof(int) *
497 (MAX_DEVICES - i - 1));
498 memmove(&mem->dev_extra[i], &mem->dev_extra[i+1], sizeof(void *) *
499 (MAX_DEVICES - i - 1));
500 memmove(&mem->dev_f[i], &mem->dev_f[i+1], sizeof(void *) *
501 (MAX_DEVICES - i - 1));
502 memmove(&mem->dev_dyntrans_data[i], &mem->dev_dyntrans_data[i+1],
503 sizeof(void *) * (MAX_DEVICES - i - 1));
504 memmove(&mem->dev_dyntrans_write_low[i], &mem->dev_dyntrans_write_low
505 [i+1], sizeof(uint64_t) * (MAX_DEVICES - i - 1));
506 memmove(&mem->dev_dyntrans_write_high[i], &mem->dev_dyntrans_write_high
507 [i+1], sizeof(uint64_t) * (MAX_DEVICES - i - 1));
508 }
509
510
511 #define MEMORY_RW userland_memory_rw
512 #define MEM_USERLAND
513 #include "memory_rw.c"
514 #undef MEM_USERLAND
515 #undef MEMORY_RW
516
517
518 /*
519 * memory_paddr_to_hostaddr():
520 *
521 * Translate a physical address into a host address.
522 *
523 * Return value is a pointer to a host memblock, or NULL on failure.
524 * On reads, a NULL return value should be interpreted as reading all zeroes.
525 */
526 unsigned char *memory_paddr_to_hostaddr(struct memory *mem,
527 uint64_t paddr, int writeflag)
528 {
529 void **table;
530 int entry;
531 const int mask = (1 << BITS_PER_PAGETABLE) - 1;
532 const int shrcount = MAX_BITS - BITS_PER_PAGETABLE;
533
534 table = mem->pagetable;
535 entry = (paddr >> shrcount) & mask;
536
537 /* printf("memory_paddr_to_hostaddr(): p=%16"PRIx64
538 " w=%i => entry=0x%x\n", (uint64_t) paddr, writeflag, entry); */
539
540 if (table[entry] == NULL) {
541 size_t alloclen;
542
543 /*
544 * Special case: reading from a nonexistant memblock
545 * returns all zeroes, and doesn't allocate anything.
546 * (If any intermediate pagetable is nonexistant, then
547 * the same thing happens):
548 */
549 if (writeflag == MEM_READ)
550 return NULL;
551
552 /* Allocate a memblock: */
553 alloclen = 1 << BITS_PER_MEMBLOCK;
554
555 /* printf(" allocating for entry %i, len=%i\n",
556 entry, alloclen); */
557
558 /* Anonymous mmap() should return zero-filled memory,
559 try malloc + memset if mmap failed. */
560 table[entry] = (void *) mmap(NULL, alloclen,
561 PROT_READ | PROT_WRITE, MAP_ANON | MAP_PRIVATE, -1, 0);
562 if (table[entry] == NULL) {
563 table[entry] = malloc(alloclen);
564 if (table[entry] == NULL) {
565 fatal("out of memory\n");
566 exit(1);
567 }
568 memset(table[entry], 0, alloclen);
569 }
570 }
571
572 return (unsigned char *) table[entry];
573 }
574
575
576 #define UPDATE_CHECKSUM(value) { \
577 internal_state -= 0x118c7771c0c0a77fULL; \
578 internal_state = ((internal_state + (value)) << 7) ^ \
579 (checksum >> 11) ^ ((checksum - (value)) << 3) ^ \
580 (internal_state - checksum) ^ ((value) - internal_state); \
581 checksum ^= internal_state; \
582 }
583
584
585 /*
586 * memory_checksum():
587 *
588 * Calculate a 64-bit checksum of everything in a struct memory. This is
589 * useful for tracking down bugs; an old (presumably working) version of
590 * the emulator can be compared to a newer (buggy) version.
591 */
592 uint64_t memory_checksum(struct memory *mem)
593 {
594 uint64_t internal_state = 0x80624185376feff2ULL;
595 uint64_t checksum = 0xcb9a87d5c010072cULL;
596 const int n_entries = (1 << BITS_PER_PAGETABLE) - 1;
597 const size_t len = (1 << BITS_PER_MEMBLOCK) / sizeof(uint64_t);
598 size_t entry, i;
599
600 for (entry=0; entry<=n_entries; entry++) {
601 uint64_t **table = mem->pagetable;
602 uint64_t *memblock = table[entry];
603
604 if (memblock == NULL) {
605 UPDATE_CHECKSUM(0x1198ab7c8174a76fULL);
606 continue;
607 }
608
609 for (i=0; i<len; i++)
610 UPDATE_CHECKSUM(memblock[i]);
611 }
612
613 return checksum;
614 }
615

  ViewVC Help
Powered by ViewVC 1.1.26