/[gxemul]/upstream/0.3.6/src/memory.c
This is repository of my old source code which isn't updated any more. Go to git.rot13.org for current projects!
ViewVC logotype

Contents of /upstream/0.3.6/src/memory.c

Parent Directory Parent Directory | Revision Log Revision Log


Revision 15 - (show annotations)
Mon Oct 8 16:18:56 2007 UTC (16 years, 6 months ago) by dpavlin
File MIME type: text/plain
File size: 14819 byte(s)
0.3.6
1 /*
2 * Copyright (C) 2003-2005 Anders Gavare. All rights reserved.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions are met:
6 *
7 * 1. Redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer.
9 * 2. Redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution.
12 * 3. The name of the author may not be used to endorse or promote products
13 * derived from this software without specific prior written permission.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 *
27 *
28 * $Id: memory.c,v 1.176 2005/08/28 20:16:23 debug Exp $
29 *
30 * Functions for handling the memory of an emulated machine.
31 */
32
33 #include <stdio.h>
34 #include <stdlib.h>
35 #include <string.h>
36 #include <sys/types.h>
37 #include <sys/mman.h>
38
39 #include "bintrans.h"
40 #include "cop0.h"
41 #include "cpu.h"
42 #include "machine.h"
43 #include "memory.h"
44 #include "mips_cpu_types.h"
45 #include "misc.h"
46
47
48 extern int quiet_mode;
49 extern volatile int single_step;
50
51
52 /*
53 * memory_readmax64():
54 *
55 * Read at most 64 bits of data from a buffer. Length is given by
56 * len, and the byte order by cpu->byte_order.
57 *
58 * This function should not be called with cpu == NULL.
59 */
60 uint64_t memory_readmax64(struct cpu *cpu, unsigned char *buf, int len)
61 {
62 int i;
63 uint64_t x = 0;
64
65 /* Switch byte order for incoming data, if necessary: */
66 if (cpu->byte_order == EMUL_BIG_ENDIAN)
67 for (i=0; i<len; i++) {
68 x <<= 8;
69 x |= buf[i];
70 }
71 else
72 for (i=len-1; i>=0; i--) {
73 x <<= 8;
74 x |= buf[i];
75 }
76
77 return x;
78 }
79
80
81 /*
82 * memory_writemax64():
83 *
84 * Write at most 64 bits of data to a buffer. Length is given by
85 * len, and the byte order by cpu->byte_order.
86 *
87 * This function should not be called with cpu == NULL.
88 */
89 void memory_writemax64(struct cpu *cpu, unsigned char *buf, int len,
90 uint64_t data)
91 {
92 int i;
93
94 if (cpu->byte_order == EMUL_LITTLE_ENDIAN)
95 for (i=0; i<len; i++) {
96 buf[i] = data & 255;
97 data >>= 8;
98 }
99 else
100 for (i=0; i<len; i++) {
101 buf[len - 1 - i] = data & 255;
102 data >>= 8;
103 }
104 }
105
106
107 /*
108 * zeroed_alloc():
109 *
110 * Allocates a block of memory using mmap(), and if that fails, try
111 * malloc() + memset(). The returned memory block contains only zeroes.
112 */
113 void *zeroed_alloc(size_t s)
114 {
115 void *p = mmap(NULL, s, PROT_READ | PROT_WRITE,
116 MAP_ANON | MAP_PRIVATE, -1, 0);
117 if (p == NULL) {
118 p = malloc(s);
119 if (p == NULL) {
120 fprintf(stderr, "out of memory\n");
121 exit(1);
122 }
123 memset(p, 0, s);
124 }
125 return p;
126 }
127
128
129 /*
130 * memory_new():
131 *
132 * This function creates a new memory object. An emulated machine needs one
133 * of these.
134 */
135 struct memory *memory_new(uint64_t physical_max, int arch)
136 {
137 struct memory *mem;
138 int bits_per_pagetable = BITS_PER_PAGETABLE;
139 int bits_per_memblock = BITS_PER_MEMBLOCK;
140 int entries_per_pagetable = 1 << BITS_PER_PAGETABLE;
141 int max_bits = MAX_BITS;
142 size_t s;
143
144 mem = malloc(sizeof(struct memory));
145 if (mem == NULL) {
146 fprintf(stderr, "out of memory\n");
147 exit(1);
148 }
149
150 memset(mem, 0, sizeof(struct memory));
151
152 /* Check bits_per_pagetable and bits_per_memblock for sanity: */
153 if (bits_per_pagetable + bits_per_memblock != max_bits) {
154 fprintf(stderr, "memory_new(): bits_per_pagetable and "
155 "bits_per_memblock mismatch\n");
156 exit(1);
157 }
158
159 mem->physical_max = physical_max;
160 mem->dev_dyntrans_alignment = 4095;
161 if (arch == ARCH_ALPHA)
162 mem->dev_dyntrans_alignment = 8191;
163
164 s = entries_per_pagetable * sizeof(void *);
165
166 mem->pagetable = (unsigned char *) mmap(NULL, s,
167 PROT_READ | PROT_WRITE, MAP_ANON | MAP_PRIVATE, -1, 0);
168 if (mem->pagetable == NULL) {
169 mem->pagetable = malloc(s);
170 if (mem->pagetable == NULL) {
171 fprintf(stderr, "out of memory\n");
172 exit(1);
173 }
174 memset(mem->pagetable, 0, s);
175 }
176
177 mem->mmap_dev_minaddr = 0xffffffffffffffffULL;
178 mem->mmap_dev_maxaddr = 0;
179
180 return mem;
181 }
182
183
184 /*
185 * memory_points_to_string():
186 *
187 * Returns 1 if there's something string-like at addr, otherwise 0.
188 */
189 int memory_points_to_string(struct cpu *cpu, struct memory *mem, uint64_t addr,
190 int min_string_length)
191 {
192 int cur_length = 0;
193 unsigned char c;
194
195 for (;;) {
196 c = '\0';
197 cpu->memory_rw(cpu, mem, addr+cur_length,
198 &c, sizeof(c), MEM_READ, CACHE_NONE | NO_EXCEPTIONS);
199 if (c=='\n' || c=='\t' || c=='\r' || (c>=' ' && c<127)) {
200 cur_length ++;
201 if (cur_length >= min_string_length)
202 return 1;
203 } else {
204 if (cur_length >= min_string_length)
205 return 1;
206 else
207 return 0;
208 }
209 }
210 }
211
212
213 /*
214 * memory_conv_to_string():
215 *
216 * Convert virtual memory contents to a string, placing it in a
217 * buffer provided by the caller.
218 */
219 char *memory_conv_to_string(struct cpu *cpu, struct memory *mem, uint64_t addr,
220 char *buf, int bufsize)
221 {
222 int len = 0;
223 int output_index = 0;
224 unsigned char c, p='\0';
225
226 while (output_index < bufsize-1) {
227 c = '\0';
228 cpu->memory_rw(cpu, mem, addr+len, &c, sizeof(c), MEM_READ,
229 CACHE_NONE | NO_EXCEPTIONS);
230 buf[output_index] = c;
231 if (c>=' ' && c<127) {
232 len ++;
233 output_index ++;
234 } else if (c=='\n' || c=='\r' || c=='\t') {
235 len ++;
236 buf[output_index] = '\\';
237 output_index ++;
238 switch (c) {
239 case '\n': p = 'n'; break;
240 case '\r': p = 'r'; break;
241 case '\t': p = 't'; break;
242 }
243 if (output_index < bufsize-1) {
244 buf[output_index] = p;
245 output_index ++;
246 }
247 } else {
248 buf[output_index] = '\0';
249 return buf;
250 }
251 }
252
253 buf[bufsize-1] = '\0';
254 return buf;
255 }
256
257
258 /*
259 * memory_device_dyntrans_access():
260 *
261 * Get the lowest and highest dyntrans (or bintrans) access since last time.
262 */
263 void memory_device_dyntrans_access(struct cpu *cpu, struct memory *mem,
264 void *extra, uint64_t *low, uint64_t *high)
265 {
266 int i, j;
267 size_t s;
268 int need_inval = 0;
269
270 /* TODO: This is O(n), so it might be good to rewrite it some day.
271 For now, it will be enough, as long as this function is not
272 called too often. */
273
274 for (i=0; i<mem->n_mmapped_devices; i++) {
275 if (mem->dev_extra[i] == extra &&
276 mem->dev_dyntrans_data[i] != NULL) {
277 if (mem->dev_dyntrans_write_low[i] != (uint64_t) -1)
278 need_inval = 1;
279 if (low != NULL)
280 *low = mem->dev_dyntrans_write_low[i];
281 mem->dev_dyntrans_write_low[i] = (uint64_t) -1;
282
283 if (high != NULL)
284 *high = mem->dev_dyntrans_write_high[i];
285 mem->dev_dyntrans_write_high[i] = 0;
286
287 if (!need_inval)
288 return;
289
290 /* Invalidate any pages of this device that might
291 be in the dyntrans load/store cache, by marking
292 the pages read-only. */
293 if (cpu->invalidate_translation_caches_paddr != NULL) {
294 for (s=0; s<mem->dev_length[i];
295 s+=cpu->machine->arch_pagesize)
296 cpu->invalidate_translation_caches_paddr
297 (cpu, mem->dev_baseaddr[i] + s,
298 JUST_MARK_AS_NON_WRITABLE);
299 }
300
301 if (cpu->machine->arch == ARCH_MIPS) {
302 /*
303 * ... and invalidate the "fast_vaddr_to_
304 * hostaddr" cache entries that contain
305 * pointers to this device: (NOTE: Device i,
306 * cache entry j)
307 */
308 for (j=0; j<N_BINTRANS_VADDR_TO_HOST; j++) {
309 if (cpu->cd.
310 mips.bintrans_data_hostpage[j] >=
311 mem->dev_dyntrans_data[i] &&
312 cpu->cd.mips.
313 bintrans_data_hostpage[j] <
314 mem->dev_dyntrans_data[i] +
315 mem->dev_length[i])
316 cpu->cd.mips.
317 bintrans_data_hostpage[j]
318 = NULL;
319 }
320 }
321 return;
322 }
323 }
324 }
325
326
327 /*
328 * memory_device_register_statefunction():
329 *
330 * TODO: Hm. This is semi-ugly. Should probably be rewritten/redesigned
331 * some day.
332 */
333 void memory_device_register_statefunction(
334 struct memory *mem, void *extra,
335 int (*dev_f_state)(struct cpu *,
336 struct memory *, void *extra, int wf, int nr,
337 int *type, char **namep, void **data, size_t *len))
338 {
339 int i;
340
341 for (i=0; i<mem->n_mmapped_devices; i++)
342 if (mem->dev_extra[i] == extra) {
343 mem->dev_f_state[i] = dev_f_state;
344 return;
345 }
346
347 printf("memory_device_register_statefunction(): "
348 "couldn't find the device\n");
349 exit(1);
350 }
351
352
353 /*
354 * memory_device_register():
355 *
356 * Register a (memory mapped) device by adding it to the dev_* fields of a
357 * memory struct.
358 */
359 void memory_device_register(struct memory *mem, const char *device_name,
360 uint64_t baseaddr, uint64_t len,
361 int (*f)(struct cpu *,struct memory *,uint64_t,unsigned char *,
362 size_t,int,void *),
363 void *extra, int flags, unsigned char *dyntrans_data)
364 {
365 int i;
366
367 if (mem->n_mmapped_devices >= MAX_DEVICES) {
368 fprintf(stderr, "memory_device_register(): too many "
369 "devices registered, cannot register '%s'\n", device_name);
370 exit(1);
371 }
372
373 /* Check for collisions: */
374 for (i=0; i<mem->n_mmapped_devices; i++) {
375 /* If we are not colliding with device i, then continue: */
376 if (baseaddr + len <= mem->dev_baseaddr[i])
377 continue;
378 if (baseaddr >= mem->dev_baseaddr[i] + mem->dev_length[i])
379 continue;
380
381 fatal("\nWARNING! \"%s\" collides with device %i (\"%s\")!\n"
382 " Run-time behaviour will be undefined!\n\n",
383 device_name, i, mem->dev_name[i]);
384 }
385
386 /* (40 bits of physical address is displayed) */
387 debug("device %2i at 0x%010llx: %s",
388 mem->n_mmapped_devices, (long long)baseaddr, device_name);
389
390 if (flags & (MEM_DYNTRANS_OK | MEM_DYNTRANS_WRITE_OK)
391 && (baseaddr & mem->dev_dyntrans_alignment) != 0) {
392 fatal("\nWARNING: Device dyntrans access, but unaligned"
393 " baseaddr 0x%llx.\n", (long long)baseaddr);
394 }
395
396 if (flags & (MEM_DYNTRANS_OK | MEM_DYNTRANS_WRITE_OK)) {
397 debug(" (dyntrans %s)",
398 (flags & MEM_DYNTRANS_WRITE_OK)? "R/W" : "R");
399 }
400 debug("\n");
401
402 mem->dev_name[mem->n_mmapped_devices] = strdup(device_name);
403 mem->dev_baseaddr[mem->n_mmapped_devices] = baseaddr;
404 mem->dev_length[mem->n_mmapped_devices] = len;
405 mem->dev_flags[mem->n_mmapped_devices] = flags;
406 mem->dev_dyntrans_data[mem->n_mmapped_devices] = dyntrans_data;
407
408 if (mem->dev_name[mem->n_mmapped_devices] == NULL) {
409 fprintf(stderr, "out of memory\n");
410 exit(1);
411 }
412
413 if (flags & (MEM_DYNTRANS_OK | MEM_DYNTRANS_WRITE_OK)
414 && dyntrans_data == NULL) {
415 fatal("\nERROR: Device dyntrans access, but dyntrans_data"
416 " = NULL!\n");
417 exit(1);
418 }
419
420 if ((size_t)dyntrans_data & 7) {
421 fprintf(stderr, "memory_device_register():"
422 " dyntrans_data not aligned correctly (%p)\n",
423 dyntrans_data);
424 exit(1);
425 }
426
427 mem->dev_dyntrans_write_low[mem->n_mmapped_devices] = (uint64_t)-1;
428 mem->dev_dyntrans_write_high[mem->n_mmapped_devices] = 0;
429 mem->dev_f[mem->n_mmapped_devices] = f;
430 mem->dev_extra[mem->n_mmapped_devices] = extra;
431 mem->n_mmapped_devices++;
432
433 if (baseaddr < mem->mmap_dev_minaddr)
434 mem->mmap_dev_minaddr = baseaddr & ~mem->dev_dyntrans_alignment;
435 if (baseaddr + len > mem->mmap_dev_maxaddr)
436 mem->mmap_dev_maxaddr = (((baseaddr + len) - 1) |
437 mem->dev_dyntrans_alignment) + 1;
438 }
439
440
441 /*
442 * memory_device_remove():
443 *
444 * Unregister a (memory mapped) device from a memory struct.
445 */
446 void memory_device_remove(struct memory *mem, int i)
447 {
448 if (i < 0 || i >= mem->n_mmapped_devices) {
449 fatal("memory_device_remove(): invalid device number %i\n", i);
450 return;
451 }
452
453 mem->n_mmapped_devices --;
454
455 if (i == mem->n_mmapped_devices)
456 return;
457
458 /*
459 * YUCK! This is ugly. TODO: fix
460 */
461
462 memmove(&mem->dev_name[i], &mem->dev_name[i+1], sizeof(char *) *
463 (MAX_DEVICES - i - 1));
464 memmove(&mem->dev_baseaddr[i], &mem->dev_baseaddr[i+1],
465 sizeof(uint64_t) * (MAX_DEVICES - i - 1));
466 memmove(&mem->dev_length[i], &mem->dev_length[i+1], sizeof(uint64_t) *
467 (MAX_DEVICES - i - 1));
468 memmove(&mem->dev_flags[i], &mem->dev_flags[i+1], sizeof(int) *
469 (MAX_DEVICES - i - 1));
470 memmove(&mem->dev_extra[i], &mem->dev_extra[i+1], sizeof(void *) *
471 (MAX_DEVICES - i - 1));
472 memmove(&mem->dev_f[i], &mem->dev_f[i+1], sizeof(void *) *
473 (MAX_DEVICES - i - 1));
474 memmove(&mem->dev_f_state[i], &mem->dev_f_state[i+1], sizeof(void *) *
475 (MAX_DEVICES - i - 1));
476 memmove(&mem->dev_dyntrans_data[i], &mem->dev_dyntrans_data[i+1],
477 sizeof(void *) * (MAX_DEVICES - i - 1));
478 memmove(&mem->dev_dyntrans_write_low[i], &mem->dev_dyntrans_write_low
479 [i+1], sizeof(void *) * (MAX_DEVICES - i - 1));
480 memmove(&mem->dev_dyntrans_write_high[i], &mem->dev_dyntrans_write_high
481 [i+1], sizeof(void *) * (MAX_DEVICES - i - 1));
482 }
483
484
485 #define MEMORY_RW userland_memory_rw
486 #define MEM_USERLAND
487 #include "memory_rw.c"
488 #undef MEM_USERLAND
489 #undef MEMORY_RW
490
491
492 /*
493 * memory_paddr_to_hostaddr():
494 *
495 * Translate a physical address into a host address.
496 *
497 * Return value is a pointer to a host memblock, or NULL on failure.
498 * On reads, a NULL return value should be interpreted as reading all zeroes.
499 */
500 unsigned char *memory_paddr_to_hostaddr(struct memory *mem,
501 uint64_t paddr, int writeflag)
502 {
503 void **table;
504 int entry;
505 const int mask = (1 << BITS_PER_PAGETABLE) - 1;
506 const int shrcount = MAX_BITS - BITS_PER_PAGETABLE;
507
508 table = mem->pagetable;
509 entry = (paddr >> shrcount) & mask;
510
511 /* printf("memory_paddr_to_hostaddr(): p=%16llx w=%i => entry=0x%x\n",
512 (long long)paddr, writeflag, entry); */
513
514 if (table[entry] == NULL) {
515 size_t alloclen;
516
517 /*
518 * Special case: reading from a nonexistant memblock
519 * returns all zeroes, and doesn't allocate anything.
520 * (If any intermediate pagetable is nonexistant, then
521 * the same thing happens):
522 */
523 if (writeflag == MEM_READ)
524 return NULL;
525
526 /* Allocate a memblock: */
527 alloclen = 1 << BITS_PER_MEMBLOCK;
528
529 /* printf(" allocating for entry %i, len=%i\n",
530 entry, alloclen); */
531
532 /* Anonymous mmap() should return zero-filled memory,
533 try malloc + memset if mmap failed. */
534 table[entry] = (void *) mmap(NULL, alloclen,
535 PROT_READ | PROT_WRITE, MAP_ANON | MAP_PRIVATE,
536 -1, 0);
537 if (table[entry] == NULL) {
538 table[entry] = malloc(alloclen);
539 if (table[entry] == NULL) {
540 fatal("out of memory\n");
541 exit(1);
542 }
543 memset(table[entry], 0, alloclen);
544 }
545 }
546
547 return (unsigned char *) table[entry];
548 }
549

  ViewVC Help
Powered by ViewVC 1.1.26