/[gxemul]/trunk/src/memory_rw.c
This is repository of my old source code which isn't updated any more. Go to git.rot13.org for current projects!
ViewVC logotype

Contents of /trunk/src/memory_rw.c

Parent Directory Parent Directory | Revision Log Revision Log


Revision 20 - (show annotations)
Mon Oct 8 16:19:23 2007 UTC (16 years, 6 months ago) by dpavlin
File MIME type: text/plain
File size: 17622 byte(s)
++ trunk/HISTORY	(local)
$Id: HISTORY,v 1.1055 2005/11/25 22:48:36 debug Exp $
20051031	Adding disassembly support for more ARM instructions (clz,
		smul* etc), and adding a hack to support "new tiny" pages
		for StrongARM.
20051101	Minor documentation updates (NetBSD 2.0.2 -> 2.1, and OpenBSD
		3.7 -> 3.8, and lots of testing).
		Changing from 1-sector PIO mode 0 transfers to 128-sector PIO
		mode 3 (in dev_wdc).
		Various minor ARM dyntrans updates (pc-relative loads from
		within the same page as the instruction are now treated as
		constant "mov").
20051102	Re-enabling instruction combinations (they were accidentally
		disabled).
		Dyntrans TLB entries are now overwritten using a round-robin
		scheme instead of randomly. This increases performance.
		Fixing a typo in file.c (thanks to Chuan-Hua Chang for
		noticing it).
		Experimenting with adding ATAPI support to dev_wdc (to make
		emulated *BSD detect cdroms as cdroms, not harddisks).
20051104	Various minor updates.
20051105	Continuing on the ATAPI emulation. Seems to work well enough
		for a NetBSD/cats installation, but not OpenBSD/cats.
		Various other updates.
20051106	Modifying the -Y command line option to allow scaleup with
		certain graphic controllers (only dev_vga so far), not just
		scaledown.
		Some minor dyntrans cleanups.
20051107	Beginning a cleanup up the PCI subsystem (removing the
		read_register hack, etc).
20051108	Continuing the cleanup; splitting up some pci devices into a
		normal autodev device and some separate pci glue code.
20051109	Continuing on the PCI bus stuff; all old pci_*.c have been
		incorporated into normal devices and/or rewritten as glue code
		only, adding a dummy Intel 82371AB PIIX4 for Malta (not really
		tested yet).
		Minor pckbc fix so that Linux doesn't complain.
		Working on the DEC 21143 NIC (ethernet mac rom stuff mostly).
		Various other minor fixes.
20051110	Some more ARM dyntrans fine-tuning (e.g. some instruction
		combinations (cmps followed by conditional branch within the
		same page) and special cases for DPIs with regform when the
		shifter isn't used).
20051111	ARM dyntrans updates: O(n)->O(1) for just-mark-as-non-
		writable in the generic pc_to_pointers function, and some other
		minor hacks.
		Merging Cobalt and evbmips (Malta) ISA interrupt handling,
		and some minor fixes to allow Linux to accept harddisk irqs.
20051112	Minor device updates (pckbc, dec21143, lpt, ...), most
		importantly fixing the ALI M1543/M5229 so that harddisk irqs
		work with Linux/CATS.
20051113	Some more generalizations of the PCI subsystem.
		Finally took the time to add a hack for SCSI CDROM TOCs; this
		enables OpenBSD to use partition 'a' (as needed by the OpenBSD
		installer), and Windows NT's installer to get a bit further.
		Also fixing dev_wdc to allow Linux to detect ATAPI CDROMs.
		Continuing on the DEC 21143.
20051114	Minor ARM dyntrans tweaks; ARM cmps+branch optimization when
		comparing with 0, and generalizing the xchg instr. comb.
		Adding disassembly of ARM mrrc/mcrr and q{,d}{add,sub}.
20051115	Continuing on various PPC things (BATs, other address trans-
		lation things, various loads/stores, BeBox emulation, etc.).
		Beginning to work on PPC interrupt/exception support.
20051116	Factoring out some code which initializes legacy ISA devices
		from those machines that use them (bus_isa).
		Continuing on PPC interrupt/exception support.
20051117	Minor Malta fixes: RTC year offset = 80, disabling a speed hack
		which caused NetBSD to detect a too fast cpu, and adding a new
		hack to make Linux detect a faster cpu.
		Continuing on the Artesyn PM/PPC emulation mode.
		Adding an Algor emulation skeleton (P4032 and P5064);
		implementing some of the basics.
		Continuing on PPC emulation in general; usage of unimplemented
		SPRs is now easier to track, continuing on memory/exception
		related issues, etc.
20051118	More work on PPC emulation (tgpr0..3, exception handling,
		memory stuff, syscalls, etc.).
20051119	Changing the ARM dyntrans code to mostly use cpu->pc, and not
		necessarily use arm reg 15. Seems to work.
		Various PPC updates; continuing on the PReP emulation mode.
20051120	Adding a workaround/hack to dev_mc146818 to allow NetBSD/prep
		to detect the clock.
20051121	More cleanup of the PCI bus (memory and I/O bases, etc).
		Continuing on various PPC things (decrementer and timebase,
		WDCs on obio (on PReP) use irq 13, not 14/15).
20051122	Continuing on the CPC700 controller (interrupts etc) for PMPPC,
		and on PPC stuff in general.
		Finally! After some bug fixes to the virtual to physical addr
		translation, NetBSD/{prep,pmppc} 2.1 reach userland and are
		stable enough to be interacted with.
		More PCI updates; reverse-endian device access for PowerPC etc.
20051123	Generalizing the IEEE floating point subsystem (moving it out
		from src/cpus/cpu_mips_coproc.c into a new src/float_emul.c).
		Input via slave xterms was sometimes not really working; fixing
		this for ns16550, and a warning message is now displayed if
		multiple non-xterm consoles are active.
		Adding some PPC floating point support, etc.
		Various interrupt related updates (dev_wdc, _ns16550, _8259,
		and the isa32 common code in machine.c).
		NetBSD/prep can now be installed! :-) (Well, with some manual
		commands necessary before running sysinst.) Updating the
		documentation and various other things to reflect this.
20051124	Various minor documentation updates.
		Continuing the work on the DEC 21143 NIC.
20051125	LOTS of work on the 21143. Both OpenBSD and NetBSD work fine
		with it now, except that OpenBSD sometimes gives a time-out
		warning.
		Minor documentation updates.

==============  RELEASE 0.3.7  ==============


1 /*
2 * Copyright (C) 2003-2005 Anders Gavare. All rights reserved.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions are met:
6 *
7 * 1. Redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer.
9 * 2. Redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution.
12 * 3. The name of the author may not be used to endorse or promote products
13 * derived from this software without specific prior written permission.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 *
27 *
28 * $Id: memory_rw.c,v 1.80 2005/11/20 11:28:44 debug Exp $
29 *
30 * Generic memory_rw(), with special hacks for specific CPU families.
31 *
32 * Example for inclusion from memory_mips.c:
33 *
34 * MEMORY_RW should be mips_memory_rw
35 * MEM_MIPS should be defined
36 */
37
38
39 /*
40 * memory_rw():
41 *
42 * Read or write data from/to memory.
43 *
44 * cpu the cpu doing the read/write
45 * mem the memory object to use
46 * vaddr the virtual address
47 * data a pointer to the data to be written to memory, or
48 * a placeholder for data when reading from memory
49 * len the length of the 'data' buffer
50 * writeflag set to MEM_READ or MEM_WRITE
51 * misc_flags CACHE_{NONE,DATA,INSTRUCTION} | other flags
52 *
53 * If the address indicates access to a memory mapped device, that device'
54 * read/write access function is called.
55 *
56 * If instruction latency/delay support is enabled, then
57 * cpu->instruction_delay is increased by the number of instruction to
58 * delay execution.
59 *
60 * This function should not be called with cpu == NULL.
61 *
62 * Returns one of the following:
63 * MEMORY_ACCESS_FAILED
64 * MEMORY_ACCESS_OK
65 *
66 * (MEMORY_ACCESS_FAILED is 0.)
67 */
68 int MEMORY_RW(struct cpu *cpu, struct memory *mem, uint64_t vaddr,
69 unsigned char *data, size_t len, int writeflag, int misc_flags)
70 {
71 #ifdef MEM_ALPHA
72 const int offset_mask = 0x1fff;
73 #else
74 const int offset_mask = 0xfff;
75 #endif
76
77 #ifndef MEM_USERLAND
78 int ok = 1;
79 #endif
80 uint64_t paddr;
81 int cache, no_exceptions, offset;
82 unsigned char *memblock;
83 #ifdef MEM_MIPS
84 int bintrans_cached = cpu->machine->bintrans_enable;
85 #endif
86 int bintrans_device_danger = 0;
87
88 no_exceptions = misc_flags & NO_EXCEPTIONS;
89 cache = misc_flags & CACHE_FLAGS_MASK;
90
91 #ifdef MEM_X86
92 /* Real-mode wrap-around: */
93 if (REAL_MODE && !(misc_flags & PHYSICAL)) {
94 if ((vaddr & 0xffff) + len > 0x10000) {
95 /* Do one byte at a time: */
96 int res = 0, i;
97 for (i=0; i<len; i++)
98 res = MEMORY_RW(cpu, mem, vaddr+i, &data[i], 1,
99 writeflag, misc_flags);
100 return res;
101 }
102 }
103
104 /* Crossing a page boundary? Then do one byte at a time: */
105 if ((vaddr & 0xfff) + len > 0x1000 && !(misc_flags & PHYSICAL)
106 && cpu->cd.x86.cr[0] & X86_CR0_PG) {
107 /* For WRITES: Read ALL BYTES FIRST and write them back!!!
108 Then do a write of all the new bytes. This is to make sure
109 than both pages around the boundary are writable so we don't
110 do a partial write. */
111 int res = 0, i;
112 if (writeflag == MEM_WRITE) {
113 unsigned char tmp;
114 for (i=0; i<len; i++) {
115 res = MEMORY_RW(cpu, mem, vaddr+i, &tmp, 1,
116 MEM_READ, misc_flags);
117 if (!res)
118 return 0;
119 res = MEMORY_RW(cpu, mem, vaddr+i, &tmp, 1,
120 MEM_WRITE, misc_flags);
121 if (!res)
122 return 0;
123 }
124 for (i=0; i<len; i++) {
125 res = MEMORY_RW(cpu, mem, vaddr+i, &data[i], 1,
126 MEM_WRITE, misc_flags);
127 if (!res)
128 return 0;
129 }
130 } else {
131 for (i=0; i<len; i++) {
132 /* Do one byte at a time: */
133 res = MEMORY_RW(cpu, mem, vaddr+i, &data[i], 1,
134 writeflag, misc_flags);
135 if (!res) {
136 if (cache == CACHE_INSTRUCTION) {
137 fatal("FAILED instruction "
138 "fetch across page boundar"
139 "y: todo. vaddr=0x%08x\n",
140 (int)vaddr);
141 cpu->running = 0;
142 }
143 return 0;
144 }
145 }
146 }
147 return res;
148 }
149 #endif /* X86 */
150
151 #ifdef MEM_MIPS
152 if (bintrans_cached) {
153 if (cache == CACHE_INSTRUCTION) {
154 cpu->cd.mips.pc_bintrans_host_4kpage = NULL;
155 cpu->cd.mips.pc_bintrans_paddr_valid = 0;
156 }
157 }
158 #endif /* MEM_MIPS */
159
160 #ifdef MEM_USERLAND
161 #ifdef MEM_ALPHA
162 paddr = vaddr;
163 #else
164 paddr = vaddr & 0x7fffffff;
165 #endif
166 goto have_paddr;
167 #endif
168
169 #ifndef MEM_USERLAND
170 #ifdef MEM_MIPS
171 /*
172 * For instruction fetch, are we on the same page as the last
173 * instruction we fetched?
174 *
175 * NOTE: There's no need to check this stuff here if this address
176 * is known to be in host ram, as it's done at instruction fetch
177 * time in cpu.c! Only check if _host_4k_page == NULL.
178 */
179 if (cache == CACHE_INSTRUCTION &&
180 cpu->cd.mips.pc_last_host_4k_page == NULL &&
181 (vaddr & ~0xfff) == cpu->cd.mips.pc_last_virtual_page) {
182 paddr = cpu->cd.mips.pc_last_physical_page | (vaddr & 0xfff);
183 goto have_paddr;
184 }
185 #endif /* MEM_MIPS */
186
187 if (misc_flags & PHYSICAL || cpu->translate_address == NULL) {
188 paddr = vaddr;
189 #ifdef MEM_ALPHA
190 /* paddr &= 0x1fffffff; For testalpha */
191 paddr &= 0x000003ffffffffffULL;
192 #endif
193 } else {
194 ok = cpu->translate_address(cpu, vaddr, &paddr,
195 (writeflag? FLAG_WRITEFLAG : 0) +
196 (no_exceptions? FLAG_NOEXCEPTIONS : 0)
197 #ifdef MEM_X86
198 + (misc_flags & NO_SEGMENTATION)
199 #endif
200 #ifdef MEM_ARM
201 + (misc_flags & MEMORY_USER_ACCESS)
202 #endif
203 + (cache==CACHE_INSTRUCTION? FLAG_INSTR : 0));
204 /* If the translation caused an exception, or was invalid in
205 some way, we simply return without doing the memory
206 access: */
207 if (!ok)
208 return MEMORY_ACCESS_FAILED;
209 }
210
211
212 #ifdef MEM_X86
213 /* DOS debugging :-) */
214 if (!quiet_mode && !(misc_flags & PHYSICAL)) {
215 if (paddr >= 0x400 && paddr <= 0x4ff)
216 debug("{ PC BIOS DATA AREA: %s 0x%x }\n", writeflag ==
217 MEM_WRITE? "writing to" : "reading from",
218 (int)paddr);
219 #if 0
220 if (paddr >= 0xf0000 && paddr <= 0xfffff)
221 debug("{ BIOS ACCESS: %s 0x%x }\n",
222 writeflag == MEM_WRITE? "writing to" :
223 "reading from", (int)paddr);
224 #endif
225 }
226 #endif
227
228 #ifdef MEM_MIPS
229 /*
230 * If correct cache emulation is enabled, and we need to simluate
231 * cache misses even from the instruction cache, we can't run directly
232 * from a host page. :-/
233 */
234 #if defined(ENABLE_CACHE_EMULATION) && defined(ENABLE_INSTRUCTION_DELAYS)
235 #else
236 if (cache == CACHE_INSTRUCTION) {
237 cpu->cd.mips.pc_last_virtual_page = vaddr & ~0xfff;
238 cpu->cd.mips.pc_last_physical_page = paddr & ~0xfff;
239 cpu->cd.mips.pc_last_host_4k_page = NULL;
240
241 /* _last_host_4k_page will be set to 1 further down,
242 if the page is actually in host ram */
243 }
244 #endif
245 #endif /* MEM_MIPS */
246 #endif /* ifndef MEM_USERLAND */
247
248
249 #if defined(MEM_MIPS) || defined(MEM_USERLAND)
250 have_paddr:
251 #endif
252
253
254 #ifdef MEM_MIPS
255 /* TODO: How about bintrans vs cache emulation? */
256 if (bintrans_cached) {
257 if (cache == CACHE_INSTRUCTION) {
258 cpu->cd.mips.pc_bintrans_paddr_valid = 1;
259 cpu->cd.mips.pc_bintrans_paddr = paddr;
260 }
261 }
262 #endif /* MEM_MIPS */
263
264
265
266 #ifndef MEM_USERLAND
267 /*
268 * Memory mapped device?
269 *
270 * TODO: this is utterly slow.
271 * TODO2: if paddr<base, but len enough, then we should write
272 * to a device to
273 */
274 if (paddr >= mem->mmap_dev_minaddr && paddr < mem->mmap_dev_maxaddr) {
275 uint64_t orig_paddr = paddr;
276 int i, start, res;
277
278 /*
279 * Really really slow, but unfortunately necessary. This is
280 * to avoid the folowing scenario:
281 *
282 * a) offsets 0x000..0x123 are normal memory
283 * b) offsets 0x124..0x777 are a device
284 *
285 * 1) a read is done from offset 0x100. the page is
286 * added to the bintrans system as a "RAM" page
287 * 2) a bintranslated read is done from offset 0x200,
288 * which should access the device, but since the
289 * entire page is added, it will access non-existant
290 * RAM instead, without warning.
291 *
292 * Setting bintrans_device_danger = 1 on accesses which are
293 * on _any_ offset on pages that are device mapped avoids
294 * this problem, but it is probably not very fast.
295 */
296 for (i=0; i<mem->n_mmapped_devices; i++)
297 if (paddr >= (mem->dev_baseaddr[i] & ~offset_mask) &&
298 paddr <= ((mem->dev_endaddr[i]-1) | offset_mask)) {
299 bintrans_device_danger = 1;
300 break;
301 }
302
303 i = start = mem->last_accessed_device;
304
305 /* Scan through all devices: */
306 do {
307 if (paddr >= mem->dev_baseaddr[i] &&
308 paddr < mem->dev_endaddr[i]) {
309 /* Found a device, let's access it: */
310 mem->last_accessed_device = i;
311
312 paddr -= mem->dev_baseaddr[i];
313 if (paddr + len > mem->dev_length[i])
314 len = mem->dev_length[i] - paddr;
315
316 if (cpu->update_translation_table != NULL &&
317 !(ok & MEMORY_NOT_FULL_PAGE) &&
318 mem->dev_flags[i] & DM_DYNTRANS_OK) {
319 int wf = writeflag == MEM_WRITE? 1 : 0;
320 unsigned char *host_addr;
321
322 if (!(mem->dev_flags[i] &
323 DM_DYNTRANS_WRITE_OK))
324 wf = 0;
325
326 if (writeflag && wf) {
327 if (paddr < mem->
328 dev_dyntrans_write_low[i])
329 mem->
330 dev_dyntrans_write_low
331 [i] = paddr &
332 ~offset_mask;
333 if (paddr >= mem->
334 dev_dyntrans_write_high[i])
335 mem->
336 dev_dyntrans_write_high
337 [i] = paddr |
338 offset_mask;
339 }
340
341 if (mem->dev_flags[i] &
342 DM_EMULATED_RAM) {
343 /* MEM_WRITE to force the page
344 to be allocated, if it
345 wasn't already */
346 uint64_t *pp = (uint64_t *)
347 mem->dev_dyntrans_data[i];
348 uint64_t p = orig_paddr - *pp;
349 host_addr =
350 memory_paddr_to_hostaddr(
351 mem, p, MEM_WRITE)
352 + (p & ~offset_mask
353 & ((1 <<
354 BITS_PER_MEMBLOCK) - 1));
355 } else {
356 host_addr =
357 mem->dev_dyntrans_data[i] +
358 (paddr & ~offset_mask);
359 }
360 cpu->update_translation_table(cpu,
361 vaddr & ~offset_mask, host_addr,
362 wf, orig_paddr & ~offset_mask);
363 }
364
365 res = 0;
366 if (!no_exceptions || (mem->dev_flags[i] &
367 DM_READS_HAVE_NO_SIDE_EFFECTS))
368 res = mem->dev_f[i](cpu, mem, paddr,
369 data, len, writeflag,
370 mem->dev_extra[i]);
371
372 #ifdef ENABLE_INSTRUCTION_DELAYS
373 if (res == 0)
374 res = -1;
375
376 #ifdef MEM_MIPS
377 cpu->cd.mips.instruction_delay +=
378 ( (abs(res) - 1) *
379 cpu->cd.mips.cpu_type.instrs_per_cycle );
380 #endif
381 #endif
382
383 #ifndef MEM_X86
384 /*
385 * If accessing the memory mapped device
386 * failed, then return with a DBE exception.
387 */
388 if (res <= 0 && !no_exceptions) {
389 debug("%s device '%s' addr %08lx "
390 "failed\n", writeflag?
391 "writing to" : "reading from",
392 mem->dev_name[i], (long)paddr);
393 #ifdef MEM_MIPS
394 mips_cpu_exception(cpu, EXCEPTION_DBE,
395 0, vaddr, 0, 0, 0, 0);
396 #endif
397 return MEMORY_ACCESS_FAILED;
398 }
399 #endif
400 goto do_return_ok;
401 }
402
403 i ++;
404 if (i == mem->n_mmapped_devices)
405 i = 0;
406 } while (i != start);
407 }
408
409
410 #ifdef MEM_MIPS
411 /*
412 * Data and instruction cache emulation:
413 */
414
415 switch (cpu->cd.mips.cpu_type.mmu_model) {
416 case MMU3K:
417 /* if not uncached addess (TODO: generalize this) */
418 if (!(misc_flags & PHYSICAL) && cache != CACHE_NONE &&
419 !((vaddr & 0xffffffffULL) >= 0xa0000000ULL &&
420 (vaddr & 0xffffffffULL) <= 0xbfffffffULL)) {
421 if (memory_cache_R3000(cpu, cache, paddr,
422 writeflag, len, data))
423 goto do_return_ok;
424 }
425 break;
426 default:
427 /* R4000 etc */
428 /* TODO */
429 ;
430 }
431 #endif /* MEM_MIPS */
432
433
434 /* Outside of physical RAM? */
435 if (paddr >= mem->physical_max) {
436 #ifdef MEM_MIPS
437 if ((paddr & 0xffffc00000ULL) == 0x1fc00000) {
438 /* Ok, this is PROM stuff */
439 } else if ((paddr & 0xfffff00000ULL) == 0x1ff00000) {
440 /* Sprite reads from this area of memory... */
441 /* TODO: is this still correct? */
442 if (writeflag == MEM_READ)
443 memset(data, 0, len);
444 goto do_return_ok;
445 } else
446 #endif /* MIPS */
447 {
448 if (paddr >= mem->physical_max) {
449 char *symbol;
450 uint64_t offset;
451 #ifdef MEM_MIPS
452 uint64_t old_pc = cpu->cd.mips.pc_last;
453 #else
454 uint64_t old_pc = cpu->pc;
455 #endif
456
457 /* This allows for example OS kernels to probe
458 memory a few KBs past the end of memory,
459 without giving too many warnings. */
460 if (!quiet_mode && !no_exceptions && paddr >=
461 mem->physical_max + 0x40000) {
462 fatal("[ memory_rw(): writeflag=%i ",
463 writeflag);
464 if (writeflag) {
465 unsigned int i;
466 debug("data={", writeflag);
467 if (len > 16) {
468 int start2 = len-16;
469 for (i=0; i<16; i++)
470 debug("%s%02x",
471 i?",":"",
472 data[i]);
473 debug(" .. ");
474 if (start2 < 16)
475 start2 = 16;
476 for (i=start2; i<len;
477 i++)
478 debug("%s%02x",
479 i?",":"",
480 data[i]);
481 } else
482 for (i=0; i<len; i++)
483 debug("%s%02x",
484 i?",":"",
485 data[i]);
486 debug("}");
487 }
488
489 fatal(" paddr=0x%llx >= physical_max"
490 "; pc=", (long long)paddr);
491 if (cpu->is_32bit)
492 fatal("0x%08x",(int)old_pc);
493 else
494 fatal("0x%016llx",
495 (long long)old_pc);
496 symbol = get_symbol_name(
497 &cpu->machine->symbol_context,
498 old_pc, &offset);
499 fatal(" <%s> ]\n",
500 symbol? symbol : " no symbol ");
501 }
502
503 if (cpu->machine->single_step_on_bad_addr) {
504 fatal("[ unimplemented access to "
505 "0x%llx, pc=0x",(long long)paddr);
506 if (cpu->is_32bit)
507 fatal("%08x ]\n",
508 (int)old_pc);
509 else
510 fatal("%016llx ]\n",
511 (long long)old_pc);
512 single_step = 1;
513 }
514 }
515
516 if (writeflag == MEM_READ) {
517 #ifdef MEM_X86
518 /* Reading non-existant memory on x86: */
519 memset(data, 0xff, len);
520 #else
521 /* Return all zeroes? (Or 0xff? TODO) */
522 memset(data, 0, len);
523 #endif
524
525 #ifdef MEM_MIPS
526 /*
527 * For real data/instruction accesses, cause
528 * an exceptions on an illegal read:
529 */
530 if (cache != CACHE_NONE && cpu->machine->
531 dbe_on_nonexistant_memaccess &&
532 !no_exceptions) {
533 if (paddr >= mem->physical_max &&
534 paddr < mem->physical_max+1048576)
535 mips_cpu_exception(cpu,
536 EXCEPTION_DBE, 0, vaddr, 0,
537 0, 0, 0);
538 }
539 #endif /* MEM_MIPS */
540 }
541
542 /* Hm? Shouldn't there be a DBE exception for
543 invalid writes as well? TODO */
544
545 goto do_return_ok;
546 }
547 }
548
549 #endif /* ifndef MEM_USERLAND */
550
551
552 /*
553 * Uncached access:
554 *
555 * 1) Translate the physical address to a host address.
556 *
557 * 2) Insert this virtual->physical->host translation into the
558 * fast translation arrays (using update_translation_table()).
559 *
560 * 3) If this was a Write, then invalidate any code translations
561 * in that page.
562 */
563 memblock = memory_paddr_to_hostaddr(mem, paddr, writeflag);
564 if (memblock == NULL) {
565 if (writeflag == MEM_READ)
566 memset(data, 0, len);
567 goto do_return_ok;
568 }
569
570 offset = paddr & ((1 << BITS_PER_MEMBLOCK) - 1);
571
572 if (cpu->update_translation_table != NULL && !bintrans_device_danger
573 #ifndef MEM_MIPS
574 /* && !(misc_flags & MEMORY_USER_ACCESS) */
575 #ifndef MEM_USERLAND
576 && !(ok & MEMORY_NOT_FULL_PAGE)
577 #endif
578 #endif
579 && !no_exceptions)
580 cpu->update_translation_table(cpu, vaddr & ~offset_mask,
581 memblock + (offset & ~offset_mask),
582 (misc_flags & MEMORY_USER_ACCESS) |
583 #ifndef MEM_MIPS
584 (cache == CACHE_INSTRUCTION? TLB_CODE : 0) |
585 #endif
586 #if !defined(MEM_MIPS) && !defined(MEM_USERLAND)
587 (cache == CACHE_INSTRUCTION?
588 (writeflag == MEM_WRITE? 1 : 0) : ok - 1),
589 #else
590 (writeflag == MEM_WRITE? 1 : 0),
591 #endif
592 paddr & ~offset_mask);
593
594 /* Invalidate code translations for the page we are writing to. */
595 if (writeflag == MEM_WRITE && cpu->invalidate_code_translation != NULL)
596 cpu->invalidate_code_translation(cpu, paddr, INVALIDATE_PADDR);
597
598 if (writeflag == MEM_WRITE) {
599 /* Ugly optimization, but it works: */
600 if (len == sizeof(uint32_t) && (offset & 3)==0
601 && ((size_t)data&3)==0)
602 *(uint32_t *)(memblock + offset) = *(uint32_t *)data;
603 else if (len == sizeof(uint8_t))
604 *(uint8_t *)(memblock + offset) = *(uint8_t *)data;
605 else
606 memcpy(memblock + offset, data, len);
607 } else {
608 /* Ugly optimization, but it works: */
609 if (len == sizeof(uint32_t) && (offset & 3)==0
610 && ((size_t)data&3)==0)
611 *(uint32_t *)data = *(uint32_t *)(memblock + offset);
612 else if (len == sizeof(uint8_t))
613 *(uint8_t *)data = *(uint8_t *)(memblock + offset);
614 else
615 memcpy(data, memblock + offset, len);
616
617 #ifdef MEM_MIPS
618 if (cache == CACHE_INSTRUCTION) {
619 cpu->cd.mips.pc_last_host_4k_page = memblock
620 + (offset & ~offset_mask);
621 if (bintrans_cached) {
622 cpu->cd.mips.pc_bintrans_host_4kpage =
623 cpu->cd.mips.pc_last_host_4k_page;
624 }
625 }
626 #endif /* MIPS */
627 }
628
629
630 do_return_ok:
631 return MEMORY_ACCESS_OK;
632 }
633

  ViewVC Help
Powered by ViewVC 1.1.26