--- trunk/src/memory_rw.c 2007/10/08 16:18:27 10 +++ trunk/src/memory_rw.c 2007/10/08 16:22:11 40 @@ -1,5 +1,5 @@ /* - * Copyright (C) 2003-2005 Anders Gavare. All rights reserved. + * Copyright (C) 2003-2007 Anders Gavare. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: @@ -25,7 +25,7 @@ * SUCH DAMAGE. * * - * $Id: memory_rw.c,v 1.38 2005/06/27 07:03:39 debug Exp $ + * $Id: memory_rw.c,v 1.102 2007/04/16 15:13:44 debug Exp $ * * Generic memory_rw(), with special hacks for specific CPU families. * @@ -48,15 +48,11 @@ * a placeholder for data when reading from memory * len the length of the 'data' buffer * writeflag set to MEM_READ or MEM_WRITE - * cache_flags CACHE_{NONE,DATA,INSTRUCTION} | other flags + * misc_flags CACHE_{NONE,DATA,INSTRUCTION} | other flags * * If the address indicates access to a memory mapped device, that device' * read/write access function is called. * - * If instruction latency/delay support is enabled, then - * cpu->instruction_delay is increased by the number of instruction to - * delay execution. - * * This function should not be called with cpu == NULL. * * Returns one of the following: @@ -66,222 +62,73 @@ * (MEMORY_ACCESS_FAILED is 0.) */ int MEMORY_RW(struct cpu *cpu, struct memory *mem, uint64_t vaddr, - unsigned char *data, size_t len, int writeflag, int cache_flags) + unsigned char *data, size_t len, int writeflag, int misc_flags) { +#ifdef MEM_ALPHA + const int offset_mask = 0x1fff; +#else + const int offset_mask = 0xfff; +#endif + #ifndef MEM_USERLAND int ok = 1; #endif uint64_t paddr; int cache, no_exceptions, offset; unsigned char *memblock; -#ifdef BINTRANS - int bintrans_cached = cpu->machine->bintrans_enable; - int bintrans_device_danger = 0; -#endif - no_exceptions = cache_flags & NO_EXCEPTIONS; - cache = cache_flags & CACHE_FLAGS_MASK; - -#ifdef MEM_PPC - if (cpu->cd.ppc.bits == 32) - vaddr &= 0xffffffff; -#endif + int dyntrans_device_danger = 0; -#ifdef MEM_ARM - vaddr &= 0x3fffffff; -#endif + no_exceptions = misc_flags & NO_EXCEPTIONS; + cache = misc_flags & CACHE_FLAGS_MASK; -#ifdef MEM_X86 - /* Real-mode wrap-around: */ - if (REAL_MODE && !(cache_flags & PHYSICAL)) { - if ((vaddr & 0xffff) + len > 0x10000) { - /* Do one byte at a time: */ - int res = 0, i; - for (i=0; i 0x1000 && !(cache_flags & PHYSICAL) - && cpu->cd.x86.cr[0] & X86_CR0_PG) { - /* For WRITES: Read ALL BYTES FIRST and write them back!!! - Then do a write of all the new bytes. This is to make sure - than both pages around the boundary are writable so we don't - do a partial write. */ - int res = 0, i; - if (writeflag == MEM_WRITE) { - unsigned char tmp; - for (i=0; irunning = 0; - } - return 0; - } - } - } - return res; - } -#endif /* X86 */ - -#ifdef MEM_URISC - { - uint64_t mask = (uint64_t) -1; - if (cpu->cd.urisc.wordlen < 64) - mask = ((int64_t)1 << cpu->cd.urisc.wordlen) - 1; - vaddr &= mask; - } -#endif - -#ifdef MEM_MIPS -#ifdef BINTRANS - if (bintrans_cached) { - if (cache == CACHE_INSTRUCTION) { - cpu->cd.mips.pc_bintrans_host_4kpage = NULL; - cpu->cd.mips.pc_bintrans_paddr_valid = 0; - } - } -#endif -#endif /* MEM_MIPS */ #ifdef MEM_USERLAND +#ifdef MEM_ALPHA + paddr = vaddr; +#else paddr = vaddr & 0x7fffffff; - goto have_paddr; #endif - -#ifndef MEM_USERLAND -#ifdef MEM_MIPS - /* - * For instruction fetch, are we on the same page as the last - * instruction we fetched? - * - * NOTE: There's no need to check this stuff here if this address - * is known to be in host ram, as it's done at instruction fetch - * time in cpu.c! Only check if _host_4k_page == NULL. - */ - if (cache == CACHE_INSTRUCTION && - cpu->cd.mips.pc_last_host_4k_page == NULL && - (vaddr & ~0xfff) == cpu->cd.mips.pc_last_virtual_page) { - paddr = cpu->cd.mips.pc_last_physical_page | (vaddr & 0xfff); - goto have_paddr; - } -#endif /* MEM_MIPS */ - - if (cache_flags & PHYSICAL || cpu->translate_address == NULL) { +#else /* !MEM_USERLAND */ + if (misc_flags & PHYSICAL || cpu->translate_v2p == NULL) { paddr = vaddr; } else { - ok = cpu->translate_address(cpu, vaddr, &paddr, + ok = cpu->translate_v2p(cpu, vaddr, &paddr, (writeflag? FLAG_WRITEFLAG : 0) + (no_exceptions? FLAG_NOEXCEPTIONS : 0) -#ifdef MEM_X86 - + (cache_flags & NO_SEGMENTATION) +#ifdef MEM_ARM + + (misc_flags & MEMORY_USER_ACCESS) #endif + (cache==CACHE_INSTRUCTION? FLAG_INSTR : 0)); - /* If the translation caused an exception, or was invalid in - some way, we simply return without doing the memory - access: */ + + /* + * If the translation caused an exception, or was invalid in + * some way, then simply return without doing the memory + * access: + */ if (!ok) return MEMORY_ACCESS_FAILED; } - -#ifdef MEM_X86 - /* DOS debugging :-) */ - if (!quiet_mode && !(cache_flags & PHYSICAL)) { - if (paddr >= 0x400 && paddr <= 0x4ff) - debug("{ PC BIOS DATA AREA: %s 0x%x }\n", writeflag == - MEM_WRITE? "writing to" : "reading from", - (int)paddr); -#if 0 - if (paddr >= 0xf0000 && paddr <= 0xfffff) - debug("{ BIOS ACCESS: %s 0x%x }\n", - writeflag == MEM_WRITE? "writing to" : - "reading from", (int)paddr); -#endif - } -#endif - -#ifdef MEM_MIPS - /* - * If correct cache emulation is enabled, and we need to simluate - * cache misses even from the instruction cache, we can't run directly - * from a host page. :-/ - */ -#if defined(ENABLE_CACHE_EMULATION) && defined(ENABLE_INSTRUCTION_DELAYS) -#else - if (cache == CACHE_INSTRUCTION) { - cpu->cd.mips.pc_last_virtual_page = vaddr & ~0xfff; - cpu->cd.mips.pc_last_physical_page = paddr & ~0xfff; - cpu->cd.mips.pc_last_host_4k_page = NULL; - - /* _last_host_4k_page will be set to 1 further down, - if the page is actually in host ram */ - } -#endif -#endif /* MEM_MIPS */ -#endif /* ifndef MEM_USERLAND */ - - -#if defined(MEM_MIPS) || defined(MEM_USERLAND) -have_paddr: -#endif - - -#ifdef MEM_MIPS - /* TODO: How about bintrans vs cache emulation? */ -#ifdef BINTRANS - if (bintrans_cached) { - if (cache == CACHE_INSTRUCTION) { - cpu->cd.mips.pc_bintrans_paddr_valid = 1; - cpu->cd.mips.pc_bintrans_paddr = paddr; - } - } -#endif -#endif /* MEM_MIPS */ - +#endif /* !MEM_USERLAND */ #ifndef MEM_USERLAND /* * Memory mapped device? * - * TODO: this is utterly slow. - * TODO2: if paddr= mem->mmap_dev_minaddr && paddr < mem->mmap_dev_maxaddr) { -#ifdef BINTRANS uint64_t orig_paddr = paddr; -#endif - int i, start, res; + int i, start, end, res; + +#if 0 + +TODO: The correct solution for this is to add RAM devices _around_ the +dangerous device. The solution below incurs a slowdown for _everything_, +not just the device in question. -#ifdef BINTRANS /* * Really really slow, but unfortunately necessary. This is * to avoid the folowing scenario: @@ -290,88 +137,97 @@ * b) offsets 0x124..0x777 are a device * * 1) a read is done from offset 0x100. the page is - * added to the bintrans system as a "RAM" page - * 2) a bintranslated read is done from offset 0x200, + * added to the dyntrans system as a "RAM" page + * 2) a dyntranslated read is done from offset 0x200, * which should access the device, but since the * entire page is added, it will access non-existant * RAM instead, without warning. * - * Setting bintrans_device_danger = 1 on accesses which are + * Setting dyntrans_device_danger = 1 on accesses which are * on _any_ offset on pages that are device mapped avoids * this problem, but it is probably not very fast. + * + * TODO: Convert this into a quick (multi-level, 64-bit) + * address space lookup, to find dangerous pages. */ - if (bintrans_cached) { - for (i=0; in_mmapped_devices; i++) - if (paddr >= (mem->dev_baseaddr[i] & ~0xfff) && - paddr <= ((mem->dev_baseaddr[i] + - mem->dev_length[i] - 1) | 0xfff)) { - bintrans_device_danger = 1; - break; - } - } + for (i=0; in_mmapped_devices; i++) + if (paddr >= (mem->devices[i].baseaddr & ~offset_mask)&& + paddr <= ((mem->devices[i].endaddr-1)|offset_mask)){ + dyntrans_device_danger = 1; + break; + } #endif - i = start = mem->last_accessed_device; + start = 0; end = mem->n_mmapped_devices - 1; + i = mem->last_accessed_device; /* Scan through all devices: */ do { - if (paddr >= mem->dev_baseaddr[i] && - paddr < mem->dev_baseaddr[i] + mem->dev_length[i]) { + if (paddr >= mem->devices[i].baseaddr && + paddr < mem->devices[i].endaddr) { /* Found a device, let's access it: */ mem->last_accessed_device = i; - paddr -= mem->dev_baseaddr[i]; - if (paddr + len > mem->dev_length[i]) - len = mem->dev_length[i] - paddr; - -#ifdef BINTRANS - if (bintrans_cached && mem->dev_flags[i] & - MEM_BINTRANS_OK) { + paddr -= mem->devices[i].baseaddr; + if (paddr + len > mem->devices[i].length) + len = mem->devices[i].length - paddr; + + if (cpu->update_translation_table != NULL && + !(ok & MEMORY_NOT_FULL_PAGE) && + mem->devices[i].flags & DM_DYNTRANS_OK) { int wf = writeflag == MEM_WRITE? 1 : 0; + unsigned char *host_addr; - if (writeflag) { - if (paddr < mem-> - dev_bintrans_write_low[i]) - mem-> - dev_bintrans_write_low - [i] = - paddr & ~0xfff; - if (paddr > mem-> - dev_bintrans_write_high[i]) - mem-> - dev_bintrans_write_high - [i] = paddr | 0xfff; + if (!(mem->devices[i].flags & + DM_DYNTRANS_WRITE_OK)) + wf = 0; + + if (writeflag && wf) { + if (paddr < mem->devices[i]. + dyntrans_write_low) + mem->devices[i]. + dyntrans_write_low = + paddr &~offset_mask; + if (paddr >= mem->devices[i]. + dyntrans_write_high) + mem->devices[i]. + dyntrans_write_high = + paddr | offset_mask; } - if (!(mem->dev_flags[i] & - MEM_BINTRANS_WRITE_OK)) - wf = 0; + if (mem->devices[i].flags & + DM_EMULATED_RAM) { + /* MEM_WRITE to force the page + to be allocated, if it + wasn't already */ + uint64_t *pp = (uint64_t *)mem-> + devices[i].dyntrans_data; + uint64_t p = orig_paddr - *pp; + host_addr = + memory_paddr_to_hostaddr( + mem, p & ~offset_mask, + MEM_WRITE); + } else { + host_addr = mem->devices[i]. + dyntrans_data + + (paddr & ~offset_mask); + } - update_translation_table(cpu, - vaddr & ~0xfff, - mem->dev_bintrans_data[i] + - (paddr & ~0xfff), - wf, orig_paddr & ~0xfff); + cpu->update_translation_table(cpu, + vaddr & ~offset_mask, host_addr, + wf, orig_paddr & ~offset_mask); } -#endif res = 0; - if (!no_exceptions || (mem->dev_flags[i] & - MEM_READING_HAS_NO_SIDE_EFFECTS)) - res = mem->dev_f[i](cpu, mem, paddr, + if (!no_exceptions || (mem->devices[i].flags & + DM_READS_HAVE_NO_SIDE_EFFECTS)) + res = mem->devices[i].f(cpu, mem, paddr, data, len, writeflag, - mem->dev_extra[i]); + mem->devices[i].extra); -#ifdef ENABLE_INSTRUCTION_DELAYS if (res == 0) res = -1; - cpu->cd.mips.instruction_delay += - ( (abs(res) - 1) * - cpu->cd.mips.cpu_type.instrs_per_cycle ); -#endif - -#ifndef MEM_X86 /* * If accessing the memory mapped device * failed, then return with a DBE exception. @@ -380,21 +236,22 @@ debug("%s device '%s' addr %08lx " "failed\n", writeflag? "writing to" : "reading from", - mem->dev_name[i], (long)paddr); + mem->devices[i].name, (long)paddr); #ifdef MEM_MIPS mips_cpu_exception(cpu, EXCEPTION_DBE, 0, vaddr, 0, 0, 0, 0); #endif return MEMORY_ACCESS_FAILED; } -#endif goto do_return_ok; } - i ++; - if (i == mem->n_mmapped_devices) - i = 0; - } while (i != start); + if (paddr < mem->devices[i].baseaddr) + end = i - 1; + if (paddr >= mem->devices[i].endaddr) + start = i + 1; + i = (start + end) >> 1; + } while (start <= end); } @@ -406,7 +263,7 @@ switch (cpu->cd.mips.cpu_type.mmu_model) { case MMU3K: /* if not uncached addess (TODO: generalize this) */ - if (!(cache_flags & PHYSICAL) && cache != CACHE_NONE && + if (!(misc_flags & PHYSICAL) && cache != CACHE_NONE && !((vaddr & 0xffffffffULL) >= 0xa0000000ULL && (vaddr & 0xffffffffULL) <= 0xbfffffffULL)) { if (memory_cache_R3000(cpu, cache, paddr, @@ -414,33 +271,6 @@ goto do_return_ok; } break; -#if 0 -/* Remove this, it doesn't work anyway */ - case MMU10K: - /* other cpus: */ - /* - * SUPER-UGLY HACK for SGI-IP32 PROM, R10000: - * K0 bits == 0x3 means uncached... - * - * It seems that during bootup, the SGI-IP32 prom - * stores a return pointers a 0x80000f10, then tests - * memory by writing bit patterns to 0xa0000xxx, and - * then when it's done, reads back the return pointer - * from 0x80000f10. - * - * I need to find the correct way to disconnect the - * cache from the main memory for R10000. (TODO !!!) - */ -/* if ((cpu->cd.mips.coproc[0]->reg[COP0_CONFIG] & 7) == 3) { */ -/* - if (cache == CACHE_DATA && - cpu->r10k_cache_disable_TODO) { - paddr &= ((512*1024)-1); - paddr += 512*1024; - } -*/ - break; -#endif default: /* R4000 etc */ /* TODO */ @@ -463,76 +293,13 @@ } else #endif /* MIPS */ { - if (paddr >= mem->physical_max) { - char *symbol; -#ifdef MEM_MIPS - uint64_t offset; -#endif - /* This allows for example OS kernels to probe - memory a few KBs past the end of memory, - without giving too many warnings. */ - if (!quiet_mode && paddr >= - mem->physical_max + 0x40000) { - fatal("[ memory_rw(): writeflag=%i ", - writeflag); - if (writeflag) { - unsigned int i; - debug("data={", writeflag); - if (len > 16) { - int start2 = len-16; - for (i=0; i<16; i++) - debug("%s%02x", - i?",":"", - data[i]); - debug(" .. "); - if (start2 < 16) - start2 = 16; - for (i=start2; imachine->symbol_context, - cpu->cd.mips.pc_last, &offset); -#else - symbol = "(unimpl for non-MIPS)"; -#endif - -/* TODO: fix! not mips.pc_last for for example ppc */ - - fatal(" paddr=%llx >= physical_max pc=" - "0x%08llx <%s> ]\n", - (long long)paddr, - (long long)cpu->cd.mips.pc_last, - symbol? symbol : "no symbol"); - } - - if (cpu->machine->single_step_on_bad_addr) { - fatal("[ unimplemented access to " - "0x%016llx, pc = 0x%016llx ]\n", - (long long)paddr, - (long long)cpu->pc); - single_step = 1; - } - } + if (paddr >= mem->physical_max && !no_exceptions) + memory_warn_about_unimplemented_addr + (cpu, mem, writeflag, paddr, data, len); if (writeflag == MEM_READ) { -#ifdef MEM_X86 - /* Reading non-existant memory on x86: */ - memset(data, 0xff, len); -#else /* Return all zeroes? (Or 0xff? TODO) */ memset(data, 0, len); -#endif #ifdef MEM_MIPS /* @@ -563,59 +330,69 @@ /* * Uncached access: + * + * 1) Translate the physical address to a host address. + * + * 2) Insert this virtual->physical->host translation into the + * fast translation arrays (using update_translation_table()). + * + * 3) If this was a Write, then invalidate any code translations + * in that page. */ - memblock = memory_paddr_to_hostaddr(mem, paddr, writeflag); + memblock = memory_paddr_to_hostaddr(mem, paddr & ~offset_mask, + writeflag); if (memblock == NULL) { if (writeflag == MEM_READ) memset(data, 0, len); goto do_return_ok; } - offset = paddr & ((1 << BITS_PER_MEMBLOCK) - 1); + offset = paddr & offset_mask; -#ifdef BINTRANS - if (bintrans_cached && !bintrans_device_danger) - update_translation_table(cpu, vaddr & ~0xfff, - memblock + (offset & ~0xfff), -#if 0 - cache == CACHE_INSTRUCTION? - (writeflag == MEM_WRITE? 1 : 0) - : ok - 1, -#else - writeflag == MEM_WRITE? 1 : 0, + if (cpu->update_translation_table != NULL && !dyntrans_device_danger +#ifdef MEM_MIPS + /* Ugly hack for R2000/R3000 caches: */ + && (cpu->cd.mips.cpu_type.mmu_model != MMU3K || + !(cpu->cd.mips.coproc[0]->reg[COP0_STATUS] & MIPS1_ISOL_CACHES)) #endif - paddr & ~0xfff); +#ifndef MEM_MIPS +/* && !(misc_flags & MEMORY_USER_ACCESS) */ +#ifndef MEM_USERLAND + && !(ok & MEMORY_NOT_FULL_PAGE) #endif - - if (writeflag == MEM_WRITE) { - if (len == sizeof(uint32_t) && (offset & 3)==0) - *(uint32_t *)(memblock + offset) = *(uint32_t *)data; - else if (len == sizeof(uint8_t)) - *(uint8_t *)(memblock + offset) = *(uint8_t *)data; - else - memcpy(memblock + offset, data, len); - } else { - if (len == sizeof(uint32_t) && (offset & 3)==0) - *(uint32_t *)data = *(uint32_t *)(memblock + offset); - else if (len == sizeof(uint8_t)) - *(uint8_t *)data = *(uint8_t *)(memblock + offset); - else - memcpy(data, memblock + offset, len); - -#ifdef MEM_MIPS - if (cache == CACHE_INSTRUCTION) { - cpu->cd.mips.pc_last_host_4k_page = memblock - + (offset & ~0xfff); -#ifdef BINTRANS - if (bintrans_cached) { - cpu->cd.mips.pc_bintrans_host_4kpage = - cpu->cd.mips.pc_last_host_4k_page; - } #endif - } -#endif /* MIPS */ - } + && !no_exceptions) + cpu->update_translation_table(cpu, vaddr & ~offset_mask, + memblock, (misc_flags & MEMORY_USER_ACCESS) | +#if !defined(MEM_MIPS) && !defined(MEM_USERLAND) + (cache == CACHE_INSTRUCTION? + (writeflag == MEM_WRITE? 1 : 0) : ok - 1), +#else + (writeflag == MEM_WRITE? 1 : 0), +#endif + paddr & ~offset_mask); + /* + * If writing, or if mapping a page where writing is ok later on, + * then invalidate code translations for the (physical) page address: + */ + if ((writeflag == MEM_WRITE +#if !defined(MEM_USERLAND) + || ok == 2 +#endif + ) && cpu->invalidate_code_translation != NULL) + cpu->invalidate_code_translation(cpu, paddr, INVALIDATE_PADDR); + + if ((paddr&((1< (1<