/[gxemul]/trunk/src/memory_rw.c
This is repository of my old source code which isn't updated any more. Go to git.rot13.org for current projects!
ViewVC logotype

Annotation of /trunk/src/memory_rw.c

Parent Directory Parent Directory | Revision Log Revision Log


Revision 6 - (hide annotations)
Mon Oct 8 16:18:11 2007 UTC (16 years, 6 months ago) by dpavlin
File MIME type: text/plain
File size: 16809 byte(s)
++ trunk/HISTORY	(local)
$Id: HISTORY,v 1.772 2005/06/04 12:02:16 debug Exp $
20050428	Disabling the "-fmove-all-movables" option in the configure
		script, because it causes the compile to fail on OpenBSD/sgi.
20050502	Minor updates.
20050503	Removing the WRT54G mode (it was bogus anyway), and adding a
		comment about Windows NT for MIPS in doc/experiments.html.
		Minor updates to the x86 instruction decoding.
20050504	Adding some more x86 instructions.
		Adding support for reading files from ISO9660 CDROMs (including
		gzipped files). It's an ugly hack, but it seems to work.
		Various other minor updates (dev_vga.c, pc_bios.c etc).
20050505	Some more x86-related updates.
		Beginning (what I hope will be) a major code cleanup phase.
		"bootris" (an x86 bootsector) runs :-)
20050506	Adding some more x86 instructions.
20050507	tmpnam => mkstemp.
		Working on a hack to allow VGA charcells to be shown even when
		not running with X11.
		Adding more x86 instructions.
20050508	x86 32-bit SIB addressing fix, and more instructions.
20050509	Adding more x86 instructions.
20050510	Minor documentation updates, and other updates (x86 stuff etc.)
20050511	More x86-related updates.
20050513	Various updates, mostly x86-related. (Trying to fix flag 
		calculation, factoring out the ugly shift/rotate code, and
		some other things.)
20050514	Adding support for loading some old i386 a.out executables.
		Finally beginning the cleanup of machine/PROM/bios dependant
		info.
		Some minor documentation updates.
		Trying to clean up ARCBIOS stuff a little.
20050515	Trying to make it possible to actually use more than one disk
		type per machine (floppy, ide, scsi).
		Trying to clean up the kbd vs PROM console stuff. (For PC and
		ARC emulation modes, mostly.)
		Beginning to add an 8259 interrupt controller, and connecting
		it to the x86 emulation.
20050516	The first x86 interrupts seem to work (keyboard stuff).
		Adding a 8253/8254 programmable interval timer skeleton.
		FreeDOS now reaches a command prompt and can be interacted
		with.
20050517	After some bugfixes, MS-DOS also (sometimes) reaches a
		command prompt now.
		Trying to fix the pckbc to work with MS-DOS' keyb.com, but no
		success yet.
20050518	Adding a simple 32-bit x86 MMU skeleton.
20050519	Some more work on the x86 stuff. (Beginning the work on paging,
		and various other fixes).
20050520	More updates. Working on dev_vga (4-bit graphics modes), adding
		40 columns support to the PC bios emulation.
		Trying to add support for resizing windows when switching
		between graphics modes.
20050521	Many more x86-related updates.
20050522	Correcting the initial stack pointer's sign-extension for
		ARCBIOS emulation (thanks to Alec Voropay for noticing the
		error).
		Continuing on the cleanup (ARCBIOS etc).
		dev_vga updates.
20050523	More x86 updates: trying to add some support for protected mode
		interrupts (via gate descriptors) and many other fixes.
		More ARCBIOS cleanup.
		Adding a device flag which indicates that reads cause no
		side-effects. (Useful for the "dump" command in the debugger,
		and other things.)
		Adding support for directly starting up x86 ELFs, skipping the
		bootloader stage. (Most ELFs, however, are not suitable for
		this.)
20050524	Adding simple 32-bit x86 TSS task switching, but no privilege
		level support yet.
		More work on dev_vga. A small "Copper bars" demo works. :-)
		Adding support for Trap Flag (single-step exceptions), at least
		in real mode, and various other x86-related fixes.
20050525	Adding a new disk image prefix (gH;S;) which can be used to
		override the default nr of heads and sectors per track.
20050527	Various bug fixes, more work on the x86 mode (stack change on
		interrupts between different priv.levels), and some minor
		documentation updates.
20050528	Various fixes (x86 stuff).
20050529	More x86 fixes. An OpenBSD/i386 bootfloppy reaches userland
		and can be interacted with (although there are problems with
		key repetition). NetBSD/i386 triggers a serious CISC-related
		problem: instruction fetches across page boundaries, where
		the later part isn't actually part of the instruction.
20050530	Various minor updates. (Documentation updates, etc.)
20050531	Adding some experimental code (experiments/new_test_*) which
		could be useful for dynamic (but not binary) translation in
		the future.
20050602	Adding a dummy ARM skeleton.
		Fixing the pckbc key repetition problem (by adding release
		scancodes for all keypresses).
20050603	Minor updates for the next release.
20050604	Release testing. Minor updates.

==============  RELEASE 0.3.3  ==============

20050604	There'll probably be a 0.3.3.1 release soon, with some very
		very tiny updates.


1 dpavlin 2 /*
2     * Copyright (C) 2003-2005 Anders Gavare. All rights reserved.
3     *
4     * Redistribution and use in source and binary forms, with or without
5     * modification, are permitted provided that the following conditions are met:
6     *
7     * 1. Redistributions of source code must retain the above copyright
8     * notice, this list of conditions and the following disclaimer.
9     * 2. Redistributions in binary form must reproduce the above copyright
10     * notice, this list of conditions and the following disclaimer in the
11     * documentation and/or other materials provided with the distribution.
12     * 3. The name of the author may not be used to endorse or promote products
13     * derived from this software without specific prior written permission.
14     *
15     * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16     * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17     * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18     * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19     * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20     * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21     * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22     * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23     * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24     * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25     * SUCH DAMAGE.
26     *
27     *
28 dpavlin 6 * $Id: memory_rw.c,v 1.37 2005/06/02 12:31:39 debug Exp $
29 dpavlin 2 *
30     * Generic memory_rw(), with special hacks for specific CPU families.
31     *
32     * Example for inclusion from memory_mips.c:
33     *
34     * MEMORY_RW should be mips_memory_rw
35     * MEM_MIPS should be defined
36     */
37    
38    
39     /*
40     * memory_rw():
41     *
42     * Read or write data from/to memory.
43     *
44     * cpu the cpu doing the read/write
45     * mem the memory object to use
46     * vaddr the virtual address
47     * data a pointer to the data to be written to memory, or
48     * a placeholder for data when reading from memory
49     * len the length of the 'data' buffer
50     * writeflag set to MEM_READ or MEM_WRITE
51     * cache_flags CACHE_{NONE,DATA,INSTRUCTION} | other flags
52     *
53     * If the address indicates access to a memory mapped device, that device'
54     * read/write access function is called.
55     *
56     * If instruction latency/delay support is enabled, then
57     * cpu->instruction_delay is increased by the number of instruction to
58     * delay execution.
59     *
60     * This function should not be called with cpu == NULL.
61     *
62     * Returns one of the following:
63     * MEMORY_ACCESS_FAILED
64     * MEMORY_ACCESS_OK
65     *
66     * (MEMORY_ACCESS_FAILED is 0.)
67     */
68     int MEMORY_RW(struct cpu *cpu, struct memory *mem, uint64_t vaddr,
69     unsigned char *data, size_t len, int writeflag, int cache_flags)
70     {
71     #ifndef MEM_USERLAND
72     int ok = 1;
73     #endif
74     uint64_t paddr;
75     int cache, no_exceptions, offset;
76     unsigned char *memblock;
77     #ifdef BINTRANS
78     int bintrans_cached = cpu->machine->bintrans_enable;
79 dpavlin 4 int bintrans_device_danger = 0;
80 dpavlin 2 #endif
81     no_exceptions = cache_flags & NO_EXCEPTIONS;
82     cache = cache_flags & CACHE_FLAGS_MASK;
83    
84     #ifdef MEM_PPC
85     if (cpu->cd.ppc.bits == 32)
86     vaddr &= 0xffffffff;
87     #endif
88    
89 dpavlin 6 #ifdef MEM_ARM
90     vaddr &= 0x0fffffff;
91     #endif
92    
93 dpavlin 4 #ifdef MEM_X86
94 dpavlin 6 /* Real-mode wrap-around: */
95     if (REAL_MODE && !(cache_flags & PHYSICAL)) {
96     if ((vaddr & 0xffff) + len > 0x10000) {
97     /* Do one byte at a time: */
98     int res = 0, i;
99     for (i=0; i<len; i++)
100     res = MEMORY_RW(cpu, mem, vaddr+i, &data[i], 1,
101     writeflag, cache_flags);
102     return res;
103     }
104     }
105 dpavlin 4
106 dpavlin 6 /* Crossing a page boundary? Then do one byte at a time: */
107     if ((vaddr & 0xfff) + len > 0x1000 && !(cache_flags & PHYSICAL)
108     && cpu->cd.x86.cr[0] & X86_CR0_PG) {
109     /* For WRITES: Read ALL BYTES FIRST and write them back!!!
110     Then do a write of all the new bytes. This is to make sure
111     than both pages around the boundary are writable so we don't
112     do a partial write. */
113     int res = 0, i;
114     if (writeflag == MEM_WRITE) {
115     unsigned char tmp;
116     for (i=0; i<len; i++) {
117     res = MEMORY_RW(cpu, mem, vaddr+i, &tmp, 1,
118     MEM_READ, cache_flags);
119     if (!res)
120 dpavlin 4 return 0;
121 dpavlin 6 res = MEMORY_RW(cpu, mem, vaddr+i, &tmp, 1,
122     MEM_WRITE, cache_flags);
123     if (!res)
124     return 0;
125     }
126     for (i=0; i<len; i++) {
127     res = MEMORY_RW(cpu, mem, vaddr+i, &data[i], 1,
128     MEM_WRITE, cache_flags);
129     if (!res)
130     return 0;
131     }
132     } else {
133     for (i=0; i<len; i++) {
134     /* Do one byte at a time: */
135     res = MEMORY_RW(cpu, mem, vaddr+i, &data[i], 1,
136     writeflag, cache_flags);
137     if (!res) {
138     if (cache == CACHE_INSTRUCTION) {
139     fatal("FAILED instruction "
140     "fetch across page boundar"
141     "y: todo. vaddr=0x%08x\n",
142     (int)vaddr);
143     cpu->running = 0;
144     }
145     return 0;
146 dpavlin 4 }
147     }
148     }
149 dpavlin 6 return res;
150 dpavlin 4 }
151 dpavlin 6 #endif /* X86 */
152 dpavlin 4
153 dpavlin 2 #ifdef MEM_URISC
154     {
155     uint64_t mask = (uint64_t) -1;
156     if (cpu->cd.urisc.wordlen < 64)
157     mask = ((int64_t)1 << cpu->cd.urisc.wordlen) - 1;
158     vaddr &= mask;
159     }
160     #endif
161    
162     #ifdef MEM_MIPS
163     #ifdef BINTRANS
164     if (bintrans_cached) {
165     if (cache == CACHE_INSTRUCTION) {
166     cpu->cd.mips.pc_bintrans_host_4kpage = NULL;
167     cpu->cd.mips.pc_bintrans_paddr_valid = 0;
168     }
169     }
170     #endif
171     #endif /* MEM_MIPS */
172    
173     #ifdef MEM_USERLAND
174     paddr = vaddr & 0x7fffffff;
175     goto have_paddr;
176     #endif
177    
178     #ifndef MEM_USERLAND
179     #ifdef MEM_MIPS
180     /*
181     * For instruction fetch, are we on the same page as the last
182     * instruction we fetched?
183     *
184     * NOTE: There's no need to check this stuff here if this address
185     * is known to be in host ram, as it's done at instruction fetch
186     * time in cpu.c! Only check if _host_4k_page == NULL.
187     */
188     if (cache == CACHE_INSTRUCTION &&
189     cpu->cd.mips.pc_last_host_4k_page == NULL &&
190     (vaddr & ~0xfff) == cpu->cd.mips.pc_last_virtual_page) {
191     paddr = cpu->cd.mips.pc_last_physical_page | (vaddr & 0xfff);
192     goto have_paddr;
193     }
194     #endif /* MEM_MIPS */
195    
196     if (cache_flags & PHYSICAL || cpu->translate_address == NULL) {
197     paddr = vaddr;
198     } else {
199     ok = cpu->translate_address(cpu, vaddr, &paddr,
200     (writeflag? FLAG_WRITEFLAG : 0) +
201     (no_exceptions? FLAG_NOEXCEPTIONS : 0)
202 dpavlin 6 #ifdef MEM_X86
203     + (cache_flags & NO_SEGMENTATION)
204     #endif
205 dpavlin 2 + (cache==CACHE_INSTRUCTION? FLAG_INSTR : 0));
206     /* If the translation caused an exception, or was invalid in
207     some way, we simply return without doing the memory
208     access: */
209     if (!ok)
210     return MEMORY_ACCESS_FAILED;
211     }
212    
213    
214 dpavlin 6 #ifdef MEM_X86
215     /* DOS debugging :-) */
216     if (!quiet_mode && !(cache_flags & PHYSICAL)) {
217     if (paddr >= 0x400 && paddr <= 0x4ff)
218     debug("{ PC BIOS DATA AREA: %s 0x%x }\n", writeflag ==
219     MEM_WRITE? "writing to" : "reading from",
220     (int)paddr);
221     #if 0
222     if (paddr >= 0xf0000 && paddr <= 0xfffff)
223     debug("{ BIOS ACCESS: %s 0x%x }\n",
224     writeflag == MEM_WRITE? "writing to" :
225     "reading from", (int)paddr);
226     #endif
227     }
228     #endif
229    
230 dpavlin 2 #ifdef MEM_MIPS
231     /*
232     * If correct cache emulation is enabled, and we need to simluate
233     * cache misses even from the instruction cache, we can't run directly
234     * from a host page. :-/
235     */
236     #if defined(ENABLE_CACHE_EMULATION) && defined(ENABLE_INSTRUCTION_DELAYS)
237     #else
238     if (cache == CACHE_INSTRUCTION) {
239     cpu->cd.mips.pc_last_virtual_page = vaddr & ~0xfff;
240     cpu->cd.mips.pc_last_physical_page = paddr & ~0xfff;
241     cpu->cd.mips.pc_last_host_4k_page = NULL;
242    
243     /* _last_host_4k_page will be set to 1 further down,
244     if the page is actually in host ram */
245     }
246     #endif
247     #endif /* MEM_MIPS */
248     #endif /* ifndef MEM_USERLAND */
249    
250    
251 dpavlin 4 #if defined(MEM_MIPS) || defined(MEM_USERLAND)
252 dpavlin 2 have_paddr:
253 dpavlin 4 #endif
254 dpavlin 2
255    
256     #ifdef MEM_MIPS
257     /* TODO: How about bintrans vs cache emulation? */
258     #ifdef BINTRANS
259     if (bintrans_cached) {
260     if (cache == CACHE_INSTRUCTION) {
261     cpu->cd.mips.pc_bintrans_paddr_valid = 1;
262     cpu->cd.mips.pc_bintrans_paddr = paddr;
263     }
264     }
265     #endif
266     #endif /* MEM_MIPS */
267    
268    
269    
270     #ifndef MEM_USERLAND
271     /*
272     * Memory mapped device?
273     *
274     * TODO: this is utterly slow.
275     * TODO2: if paddr<base, but len enough, then we should write
276     * to a device to
277     */
278     if (paddr >= mem->mmap_dev_minaddr && paddr < mem->mmap_dev_maxaddr) {
279     #ifdef BINTRANS
280     uint64_t orig_paddr = paddr;
281     #endif
282     int i, start, res;
283 dpavlin 4
284     #ifdef BINTRANS
285     /*
286     * Really really slow, but unfortunately necessary. This is
287     * to avoid the folowing scenario:
288     *
289     * a) offsets 0x000..0x123 are normal memory
290     * b) offsets 0x124..0x777 are a device
291     *
292     * 1) a read is done from offset 0x100. the page is
293     * added to the bintrans system as a "RAM" page
294     * 2) a bintranslated read is done from offset 0x200,
295     * which should access the device, but since the
296     * entire page is added, it will access non-existant
297     * RAM instead, without warning.
298     *
299     * Setting bintrans_device_danger = 1 on accesses which are
300     * on _any_ offset on pages that are device mapped avoids
301     * this problem, but it is probably not very fast.
302     */
303     if (bintrans_cached) {
304     for (i=0; i<mem->n_mmapped_devices; i++)
305     if (paddr >= (mem->dev_baseaddr[i] & ~0xfff) &&
306     paddr <= ((mem->dev_baseaddr[i] +
307     mem->dev_length[i] - 1) | 0xfff)) {
308     bintrans_device_danger = 1;
309     break;
310     }
311     }
312     #endif
313    
314 dpavlin 2 i = start = mem->last_accessed_device;
315    
316     /* Scan through all devices: */
317     do {
318     if (paddr >= mem->dev_baseaddr[i] &&
319     paddr < mem->dev_baseaddr[i] + mem->dev_length[i]) {
320     /* Found a device, let's access it: */
321     mem->last_accessed_device = i;
322    
323     paddr -= mem->dev_baseaddr[i];
324     if (paddr + len > mem->dev_length[i])
325     len = mem->dev_length[i] - paddr;
326    
327     #ifdef BINTRANS
328     if (bintrans_cached && mem->dev_flags[i] &
329     MEM_BINTRANS_OK) {
330     int wf = writeflag == MEM_WRITE? 1 : 0;
331    
332     if (writeflag) {
333     if (paddr < mem->
334     dev_bintrans_write_low[i])
335     mem->
336     dev_bintrans_write_low
337     [i] =
338     paddr & ~0xfff;
339     if (paddr > mem->
340     dev_bintrans_write_high[i])
341     mem->
342     dev_bintrans_write_high
343     [i] = paddr | 0xfff;
344     }
345    
346     if (!(mem->dev_flags[i] &
347     MEM_BINTRANS_WRITE_OK))
348     wf = 0;
349    
350     update_translation_table(cpu,
351     vaddr & ~0xfff,
352     mem->dev_bintrans_data[i] +
353     (paddr & ~0xfff),
354     wf, orig_paddr & ~0xfff);
355     }
356     #endif
357    
358 dpavlin 6 res = 0;
359     if (!no_exceptions || (mem->dev_flags[i] &
360     MEM_READING_HAS_NO_SIDE_EFFECTS))
361     res = mem->dev_f[i](cpu, mem, paddr,
362     data, len, writeflag,
363     mem->dev_extra[i]);
364 dpavlin 2
365     #ifdef ENABLE_INSTRUCTION_DELAYS
366     if (res == 0)
367     res = -1;
368    
369     cpu->cd.mips.instruction_delay +=
370     ( (abs(res) - 1) *
371     cpu->cd.mips.cpu_type.instrs_per_cycle );
372     #endif
373 dpavlin 6
374     #ifndef MEM_X86
375 dpavlin 2 /*
376     * If accessing the memory mapped device
377     * failed, then return with a DBE exception.
378     */
379 dpavlin 6 if (res <= 0 && !no_exceptions) {
380 dpavlin 2 debug("%s device '%s' addr %08lx "
381     "failed\n", writeflag?
382     "writing to" : "reading from",
383     mem->dev_name[i], (long)paddr);
384     #ifdef MEM_MIPS
385     mips_cpu_exception(cpu, EXCEPTION_DBE,
386     0, vaddr, 0, 0, 0, 0);
387     #endif
388     return MEMORY_ACCESS_FAILED;
389     }
390 dpavlin 6 #endif
391 dpavlin 2 goto do_return_ok;
392     }
393    
394     i ++;
395     if (i == mem->n_mmapped_devices)
396     i = 0;
397     } while (i != start);
398     }
399    
400    
401     #ifdef MEM_MIPS
402     /*
403     * Data and instruction cache emulation:
404     */
405    
406     switch (cpu->cd.mips.cpu_type.mmu_model) {
407     case MMU3K:
408     /* if not uncached addess (TODO: generalize this) */
409     if (!(cache_flags & PHYSICAL) && cache != CACHE_NONE &&
410     !((vaddr & 0xffffffffULL) >= 0xa0000000ULL &&
411     (vaddr & 0xffffffffULL) <= 0xbfffffffULL)) {
412     if (memory_cache_R3000(cpu, cache, paddr,
413     writeflag, len, data))
414     goto do_return_ok;
415     }
416     break;
417     #if 0
418     /* Remove this, it doesn't work anyway */
419     case MMU10K:
420     /* other cpus: */
421     /*
422     * SUPER-UGLY HACK for SGI-IP32 PROM, R10000:
423     * K0 bits == 0x3 means uncached...
424     *
425     * It seems that during bootup, the SGI-IP32 prom
426     * stores a return pointers a 0x80000f10, then tests
427     * memory by writing bit patterns to 0xa0000xxx, and
428     * then when it's done, reads back the return pointer
429     * from 0x80000f10.
430     *
431     * I need to find the correct way to disconnect the
432     * cache from the main memory for R10000. (TODO !!!)
433     */
434     /* if ((cpu->cd.mips.coproc[0]->reg[COP0_CONFIG] & 7) == 3) { */
435     /*
436     if (cache == CACHE_DATA &&
437     cpu->r10k_cache_disable_TODO) {
438     paddr &= ((512*1024)-1);
439     paddr += 512*1024;
440     }
441     */
442     break;
443     #endif
444     default:
445     /* R4000 etc */
446     /* TODO */
447     ;
448     }
449     #endif /* MEM_MIPS */
450    
451    
452     /* Outside of physical RAM? */
453     if (paddr >= mem->physical_max) {
454 dpavlin 6 #ifdef MEM_MIPS
455     if ((paddr & 0xffffc00000ULL) == 0x1fc00000) {
456 dpavlin 2 /* Ok, this is PROM stuff */
457     } else if ((paddr & 0xfffff00000ULL) == 0x1ff00000) {
458     /* Sprite reads from this area of memory... */
459     /* TODO: is this still correct? */
460     if (writeflag == MEM_READ)
461     memset(data, 0, len);
462     goto do_return_ok;
463 dpavlin 6 } else
464     #endif /* MIPS */
465     {
466     if (paddr >= mem->physical_max) {
467 dpavlin 2 char *symbol;
468     #ifdef MEM_MIPS
469     uint64_t offset;
470     #endif
471 dpavlin 6 /* This allows for example OS kernels to probe
472     memory a few KBs past the end of memory,
473     without giving too many warnings. */
474     if (!quiet_mode && paddr >=
475     mem->physical_max + 0x40000) {
476 dpavlin 2 fatal("[ memory_rw(): writeflag=%i ",
477     writeflag);
478     if (writeflag) {
479     unsigned int i;
480     debug("data={", writeflag);
481     if (len > 16) {
482     int start2 = len-16;
483     for (i=0; i<16; i++)
484     debug("%s%02x",
485     i?",":"",
486     data[i]);
487     debug(" .. ");
488     if (start2 < 16)
489     start2 = 16;
490     for (i=start2; i<len;
491     i++)
492     debug("%s%02x",
493     i?",":"",
494     data[i]);
495     } else
496     for (i=0; i<len; i++)
497     debug("%s%02x",
498     i?",":"",
499     data[i]);
500     debug("}");
501     }
502     #ifdef MEM_MIPS
503     symbol = get_symbol_name(
504     &cpu->machine->symbol_context,
505     cpu->cd.mips.pc_last, &offset);
506     #else
507     symbol = "(unimpl for non-MIPS)";
508     #endif
509    
510     /* TODO: fix! not mips.pc_last for for example ppc */
511    
512     fatal(" paddr=%llx >= physical_max pc="
513     "0x%08llx <%s> ]\n",
514     (long long)paddr,
515     (long long)cpu->cd.mips.pc_last,
516     symbol? symbol : "no symbol");
517     }
518    
519     if (cpu->machine->single_step_on_bad_addr) {
520     fatal("[ unimplemented access to "
521     "0x%016llx, pc = 0x%016llx ]\n",
522     (long long)paddr,
523     (long long)cpu->pc);
524     single_step = 1;
525     }
526     }
527    
528     if (writeflag == MEM_READ) {
529 dpavlin 6 #ifdef MEM_X86
530     /* Reading non-existant memory on x86: */
531     memset(data, 0xff, len);
532     #else
533 dpavlin 2 /* Return all zeroes? (Or 0xff? TODO) */
534     memset(data, 0, len);
535 dpavlin 6 #endif
536 dpavlin 2
537     #ifdef MEM_MIPS
538     /*
539     * For real data/instruction accesses, cause
540     * an exceptions on an illegal read:
541     */
542     if (cache != CACHE_NONE && cpu->machine->
543 dpavlin 6 dbe_on_nonexistant_memaccess &&
544     !no_exceptions) {
545 dpavlin 2 if (paddr >= mem->physical_max &&
546     paddr < mem->physical_max+1048576)
547     mips_cpu_exception(cpu,
548     EXCEPTION_DBE, 0, vaddr, 0,
549     0, 0, 0);
550     }
551     #endif /* MEM_MIPS */
552     }
553    
554     /* Hm? Shouldn't there be a DBE exception for
555     invalid writes as well? TODO */
556    
557     goto do_return_ok;
558     }
559     }
560    
561     #endif /* ifndef MEM_USERLAND */
562    
563    
564     /*
565     * Uncached access:
566     */
567     memblock = memory_paddr_to_hostaddr(mem, paddr, writeflag);
568     if (memblock == NULL) {
569     if (writeflag == MEM_READ)
570     memset(data, 0, len);
571     goto do_return_ok;
572     }
573    
574     offset = paddr & ((1 << BITS_PER_MEMBLOCK) - 1);
575    
576     #ifdef BINTRANS
577 dpavlin 4 if (bintrans_cached && !bintrans_device_danger)
578 dpavlin 2 update_translation_table(cpu, vaddr & ~0xfff,
579     memblock + (offset & ~0xfff),
580     #if 0
581     cache == CACHE_INSTRUCTION?
582     (writeflag == MEM_WRITE? 1 : 0)
583     : ok - 1,
584     #else
585     writeflag == MEM_WRITE? 1 : 0,
586     #endif
587     paddr & ~0xfff);
588     #endif
589    
590     if (writeflag == MEM_WRITE) {
591     if (len == sizeof(uint32_t) && (offset & 3)==0)
592     *(uint32_t *)(memblock + offset) = *(uint32_t *)data;
593     else if (len == sizeof(uint8_t))
594     *(uint8_t *)(memblock + offset) = *(uint8_t *)data;
595     else
596     memcpy(memblock + offset, data, len);
597     } else {
598     if (len == sizeof(uint32_t) && (offset & 3)==0)
599     *(uint32_t *)data = *(uint32_t *)(memblock + offset);
600     else if (len == sizeof(uint8_t))
601     *(uint8_t *)data = *(uint8_t *)(memblock + offset);
602     else
603     memcpy(data, memblock + offset, len);
604    
605 dpavlin 6 #ifdef MEM_MIPS
606 dpavlin 2 if (cache == CACHE_INSTRUCTION) {
607     cpu->cd.mips.pc_last_host_4k_page = memblock
608     + (offset & ~0xfff);
609     #ifdef BINTRANS
610     if (bintrans_cached) {
611     cpu->cd.mips.pc_bintrans_host_4kpage =
612     cpu->cd.mips.pc_last_host_4k_page;
613     }
614     #endif
615     }
616 dpavlin 6 #endif /* MIPS */
617 dpavlin 2 }
618    
619    
620     do_return_ok:
621     return MEMORY_ACCESS_OK;
622     }
623    

  ViewVC Help
Powered by ViewVC 1.1.26