/[gxemul]/trunk/src/memory.c
This is repository of my old source code which isn't updated any more. Go to git.rot13.org for current projects!
ViewVC logotype

Annotation of /trunk/src/memory.c

Parent Directory Parent Directory | Revision Log Revision Log


Revision 42 - (hide annotations)
Mon Oct 8 16:22:32 2007 UTC (16 years, 6 months ago) by dpavlin
File MIME type: text/plain
File size: 26585 byte(s)
++ trunk/HISTORY	(local)
$Id: HISTORY,v 1.1613 2007/06/15 20:11:26 debug Exp $
20070501	Continuing a little on m88k disassembly (control registers,
		more instructions).
		Adding a dummy mvme88k machine mode.
20070502	Re-adding MIPS load/store alignment exceptions.
20070503	Implementing more of the M88K disassembly code.
20070504	Adding disassembly of some more M88K load/store instructions.
		Implementing some relatively simple M88K instructions (br.n,
		xor[.u] imm, and[.u] imm).
20070505	Implementing M88K three-register and, or, xor, and jmp[.n],
		bsr[.n] including function call trace stuff.
		Applying a patch from Bruce M. Simpson which implements the
		SYSCON_BOARD_CPU_CLOCK_FREQ_ID object of the syscon call in
		the yamon PROM emulation.
20070506	Implementing M88K bb0[.n] and bb1[.n], and skeletons for
		ldcr and stcr (although no control regs are implemented yet).
20070509	Found and fixed the bug which caused Linux for QEMU_MIPS to
		stop working in 0.4.5.1: It was a faulty change to the MIPS
		'sc' and 'scd' instructions I made while going through gcc -W
		warnings on 20070428.
20070510	Updating the Linux/QEMU_MIPS section in guestoses.html to
		use mips-test-0.2.tar.gz instead of 0.1.
		A big thank you to Miod Vallat for sending me M88K manuals.
		Implementing more M88K instructions (addu, subu, div[u], mulu,
		ext[u], clr, set, cmp).
20070511	Fixing bugs in the M88K "and" and "and.u" instructions (found
		by comparing against the manual).
		Implementing more M88K instructions (mask[.u], mak, bcnd (auto-
		generated)) and some more control register details.
		Cleanup: Removing the experimental AVR emulation mode and
		corresponding devices; AVR emulation wasn't really meaningful.
		Implementing autogeneration of most M88K loads/stores. The
		rectangle drawing demo (with -O0) for M88K runs :-)
		Beginning on M88K exception handling.
		More M88K instructions: tb0, tb1, rte, sub, jsr[.n].
		Adding some skeleton MVME PROM ("BUG") emulation.
20070512	Fixing a bug in the M88K cmp instruction.
		Adding the M88K lda (scaled register) instruction.
		Fixing bugs in 64-bit (32-bit pairs) M88K loads/stores.
		Removing the unused tick_hz stuff from the machine struct.
		Implementing the M88K xmem instruction. OpenBSD/mvme88k gets
		far enough to display the Copyright banner :-)
		Implementing subu.co (guess), addu.co, addu.ci, ff0, and ff1.
		Adding a dev_mvme187, for MVME187-specific devices/registers.
		OpenBSD/mvme88k prints more boot messages. :)
20070515	Continuing on MVME187 emulation (adding more devices, beginning
		on the CMMUs, etc).
		Adding the M88K and.c, xor.c, and or.c instructions, and making
		sure that mul, div, etc cause exceptions if executed when SFD1
		is disabled.
20070517	Continuing on M88K and MVME187 emulation in general; moving
		the CMMU registers to the CPU struct, separating dev_pcc2 from
		dev_mvme187, and beginning on memory_m88k.c (BATC and PATC).
		Fixing a bug in 64-bit (32-bit pairs) M88K fast stores.
		Implementing the clock part of dev_mk48txx.
		Implementing the M88K fstcr and xcr instructions.
		Implementing m88k_cpu_tlbdump().
		Beginning on the implementation of a separate address space
		for M88K .usr loads/stores.
20070520	Removing the non-working (skeleton) Sandpoint, SonyNEWS, SHARK
		Dnard, and Zaurus machine modes.
		Experimenting with dyntrans to_be_translated read-ahead. It
		seems to give a very small performance increase for MIPS
		emulation, but a large performance degradation for SuperH. Hm.
20070522	Disabling correct SuperH ITLB emulation; it does not seem to be
		necessary in order to let SH4 guest OSes run, and it slows down
		userspace code.
		Implementing "samepage" branches for SuperH emulation, and some
		other minor speed hacks.
20070525	Continuing on M88K memory-related stuff: exceptions, memory
		transaction register contents, etc.
		Implementing the M88K subu.ci instruction.
		Removing the non-working (skeleton) Iyonix machine mode.
		OpenBSD/mvme88k reaches userland :-), starts executing
		/sbin/init's instructions, and issues a few syscalls, before
		crashing.
20070526	Fixing bugs in dev_mk48txx, so that OpenBSD/mvme88k detects
		the correct time-of-day.
		Implementing a generic IRQ controller for the test machines
		(dev_irqc), similar to a proposed patch from Petr Stepan.
		Experimenting some more with translation read-ahead.
		Adding an "expect" script for automated OpenBSD/landisk
		install regression/performance tests.
20070527	Adding a dummy mmEye (SH3) machine mode skeleton.
		FINALLY found the strange M88K bug I have been hunting: I had
		not emulated the SNIP value for exceptions occurring in
		branch delay slots correctly.
		Implementing correct exceptions for 64-bit M88K loads/stores.
		Address to symbol lookups are now disabled when M88K is
		running in usermode (because usermode addresses don't have
		anything to do with supervisor addresses).
20070531	Removing the mmEye machine mode skeleton.
20070604	Some minor code cleanup.
20070605	Moving src/useremul.c into a subdir (src/useremul/), and
		cleaning up some more legacy constructs.
		Adding -Wstrict-aliasing and -fstrict-aliasing detection to
		the configure script.
20070606	Adding a check for broken GCC on Solaris to the configure
		script. (GCC 3.4.3 on Solaris cannot handle static variables
		which are initialized to 0 or NULL. :-/)
		Removing the old (non-working) ARC emulation modes: NEC RD94,
		R94, R96, and R98, and the last traces of Olivetti M700 and
		Deskstation Tyne.
		Removing the non-working skeleton WDSC device (dev_wdsc).
20070607	Thinking about how to use the host's cc + ld at runtime to
		generate native code. (See experiments/native_cc_ld_test.i
		for an example.)
20070608	Adding a program counter sampling timer, which could be useful
		for native code generation experiments.
		The KN02_CSR_NRMMOD bit in the DECstation 5000/200 (KN02) CSR
		should always be set, to allow a 5000/200 PROM to boot.
20070609	Moving out breakpoint details from the machine struct into
		a helper struct, and removing the limit on max nr of
		breakpoints.
20070610	Moving out tick functions into a helper struct as well (which
		also gets rid of the max limit).
20070612	FINALLY figured out why Debian/DECstation stopped working when
		translation read-ahead was enabled: in src/memory_rw.c, the
		call to invalidate_code_translation was made also if the
		memory access was an instruction load (if the page was mapped
		as writable); it shouldn't be called in that case.
20070613	Implementing some more MIPS32/64 revision 2 instructions: di,
		ei, ext, dext, dextm, dextu, and ins.
20070614	Implementing an instruction combination for the NetBSD/arm
		idle loop (making the host not use any cpu if NetBSD/arm
		inside the emulator is not using any cpu).
		Increasing the nr of ARM VPH entries from 128 to 384.
20070615	Removing the ENABLE_arch stuff from the configure script, so
		that all included architectures are included in both release
		and development builds.
		Moving memory related helper functions from misc.c to memory.c.
		Adding preliminary instructions for netbooting NetBSD/pmppc to
		guestoses.html; it doesn't work yet, there are weird timeouts.
		Beginning a total rewrite of the userland emulation modes
		(removing all emulation modes, beginning from scratch with
		NetBSD/MIPS and FreeBSD/Alpha only).
20070616	After fixing a bug in the DEC21143 NIC (the TDSTAT_OWN bit was
		only cleared for the last segment when transmitting, not all
		segments), NetBSD/pmppc boots with root-on-nfs without the
		timeouts. Updating guestoses.html.
		Removing the skeleton PSP (Playstation Portable) mode.
		Moving X11-related stuff in the machine struct into a helper
		struct.
		Cleanup of out-of-memory checks, to use a new CHECK_ALLOCATION
		macro (which prints a meaningful error message).
		Adding a COMMENT to each machine and device (for automagic
		.index comment generation).
		Doing regression testing for the next release.

==============  RELEASE 0.4.6  ==============


1 dpavlin 2 /*
2 dpavlin 34 * Copyright (C) 2003-2007 Anders Gavare. All rights reserved.
3 dpavlin 2 *
4     * Redistribution and use in source and binary forms, with or without
5     * modification, are permitted provided that the following conditions are met:
6     *
7     * 1. Redistributions of source code must retain the above copyright
8     * notice, this list of conditions and the following disclaimer.
9     * 2. Redistributions in binary form must reproduce the above copyright
10     * notice, this list of conditions and the following disclaimer in the
11     * documentation and/or other materials provided with the distribution.
12     * 3. The name of the author may not be used to endorse or promote products
13     * derived from this software without specific prior written permission.
14     *
15     * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16     * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17     * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18     * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19     * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20     * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21     * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22     * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23     * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24     * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25     * SUCH DAMAGE.
26     *
27     *
28 dpavlin 42 * $Id: memory.c,v 1.204 2007/06/15 17:02:38 debug Exp $
29 dpavlin 2 *
30     * Functions for handling the memory of an emulated machine.
31     */
32    
33     #include <stdio.h>
34     #include <stdlib.h>
35     #include <string.h>
36     #include <sys/types.h>
37     #include <sys/mman.h>
38    
39     #include "cpu.h"
40     #include "machine.h"
41     #include "memory.h"
42     #include "misc.h"
43    
44    
45 dpavlin 22 extern int verbose;
46 dpavlin 34 extern int quiet_mode;
47 dpavlin 2
48    
49     /*
50     * memory_readmax64():
51     *
52     * Read at most 64 bits of data from a buffer. Length is given by
53     * len, and the byte order by cpu->byte_order.
54     *
55     * This function should not be called with cpu == NULL.
56     */
57     uint64_t memory_readmax64(struct cpu *cpu, unsigned char *buf, int len)
58     {
59 dpavlin 20 int i, byte_order = cpu->byte_order;
60 dpavlin 2 uint64_t x = 0;
61    
62 dpavlin 20 if (len & MEM_PCI_LITTLE_ENDIAN) {
63     len &= ~MEM_PCI_LITTLE_ENDIAN;
64     byte_order = EMUL_LITTLE_ENDIAN;
65     }
66    
67 dpavlin 2 /* Switch byte order for incoming data, if necessary: */
68 dpavlin 20 if (byte_order == EMUL_BIG_ENDIAN)
69 dpavlin 2 for (i=0; i<len; i++) {
70     x <<= 8;
71     x |= buf[i];
72     }
73     else
74     for (i=len-1; i>=0; i--) {
75     x <<= 8;
76     x |= buf[i];
77     }
78    
79     return x;
80     }
81    
82    
83     /*
84     * memory_writemax64():
85     *
86     * Write at most 64 bits of data to a buffer. Length is given by
87     * len, and the byte order by cpu->byte_order.
88     *
89     * This function should not be called with cpu == NULL.
90     */
91     void memory_writemax64(struct cpu *cpu, unsigned char *buf, int len,
92     uint64_t data)
93     {
94 dpavlin 20 int i, byte_order = cpu->byte_order;
95 dpavlin 2
96 dpavlin 20 if (len & MEM_PCI_LITTLE_ENDIAN) {
97     len &= ~MEM_PCI_LITTLE_ENDIAN;
98     byte_order = EMUL_LITTLE_ENDIAN;
99     }
100    
101     if (byte_order == EMUL_LITTLE_ENDIAN)
102 dpavlin 2 for (i=0; i<len; i++) {
103     buf[i] = data & 255;
104     data >>= 8;
105     }
106     else
107     for (i=0; i<len; i++) {
108     buf[len - 1 - i] = data & 255;
109     data >>= 8;
110     }
111     }
112    
113    
114     /*
115     * zeroed_alloc():
116     *
117     * Allocates a block of memory using mmap(), and if that fails, try
118 dpavlin 12 * malloc() + memset(). The returned memory block contains only zeroes.
119 dpavlin 2 */
120     void *zeroed_alloc(size_t s)
121     {
122     void *p = mmap(NULL, s, PROT_READ | PROT_WRITE,
123     MAP_ANON | MAP_PRIVATE, -1, 0);
124 dpavlin 32
125 dpavlin 2 if (p == NULL) {
126 dpavlin 32 #if 1
127     fprintf(stderr, "zeroed_alloc(): mmap() failed. This should"
128     " not usually happen. If you can reproduce this, then"
129     " please contact me with details about your run-time"
130     " environment.\n");
131     exit(1);
132     #else
133 dpavlin 42 CHECK_ALLOCATION(p = malloc(s));
134 dpavlin 2 memset(p, 0, s);
135 dpavlin 32 #endif
136 dpavlin 2 }
137 dpavlin 32
138 dpavlin 2 return p;
139     }
140    
141    
142     /*
143     * memory_new():
144     *
145     * This function creates a new memory object. An emulated machine needs one
146     * of these.
147     */
148 dpavlin 12 struct memory *memory_new(uint64_t physical_max, int arch)
149 dpavlin 2 {
150     struct memory *mem;
151     int bits_per_pagetable = BITS_PER_PAGETABLE;
152     int bits_per_memblock = BITS_PER_MEMBLOCK;
153     int entries_per_pagetable = 1 << BITS_PER_PAGETABLE;
154     int max_bits = MAX_BITS;
155     size_t s;
156    
157 dpavlin 42 CHECK_ALLOCATION(mem = malloc(sizeof(struct memory)));
158 dpavlin 2 memset(mem, 0, sizeof(struct memory));
159    
160     /* Check bits_per_pagetable and bits_per_memblock for sanity: */
161     if (bits_per_pagetable + bits_per_memblock != max_bits) {
162     fprintf(stderr, "memory_new(): bits_per_pagetable and "
163     "bits_per_memblock mismatch\n");
164     exit(1);
165     }
166    
167     mem->physical_max = physical_max;
168 dpavlin 12 mem->dev_dyntrans_alignment = 4095;
169     if (arch == ARCH_ALPHA)
170     mem->dev_dyntrans_alignment = 8191;
171 dpavlin 2
172     s = entries_per_pagetable * sizeof(void *);
173    
174     mem->pagetable = (unsigned char *) mmap(NULL, s,
175     PROT_READ | PROT_WRITE, MAP_ANON | MAP_PRIVATE, -1, 0);
176     if (mem->pagetable == NULL) {
177 dpavlin 42 CHECK_ALLOCATION(mem->pagetable = malloc(s));
178 dpavlin 2 memset(mem->pagetable, 0, s);
179     }
180    
181     mem->mmap_dev_minaddr = 0xffffffffffffffffULL;
182     mem->mmap_dev_maxaddr = 0;
183    
184     return mem;
185     }
186    
187    
188     /*
189     * memory_points_to_string():
190     *
191 dpavlin 22 * Returns 1 if there's something string-like in emulated memory at address
192     * addr, otherwise 0.
193 dpavlin 2 */
194     int memory_points_to_string(struct cpu *cpu, struct memory *mem, uint64_t addr,
195     int min_string_length)
196     {
197     int cur_length = 0;
198     unsigned char c;
199    
200     for (;;) {
201     c = '\0';
202     cpu->memory_rw(cpu, mem, addr+cur_length,
203     &c, sizeof(c), MEM_READ, CACHE_NONE | NO_EXCEPTIONS);
204     if (c=='\n' || c=='\t' || c=='\r' || (c>=' ' && c<127)) {
205     cur_length ++;
206     if (cur_length >= min_string_length)
207     return 1;
208     } else {
209     if (cur_length >= min_string_length)
210     return 1;
211     else
212     return 0;
213     }
214     }
215     }
216    
217    
218     /*
219     * memory_conv_to_string():
220     *
221 dpavlin 22 * Convert emulated memory contents to a string, placing it in a buffer
222     * provided by the caller.
223 dpavlin 2 */
224     char *memory_conv_to_string(struct cpu *cpu, struct memory *mem, uint64_t addr,
225     char *buf, int bufsize)
226     {
227     int len = 0;
228     int output_index = 0;
229     unsigned char c, p='\0';
230    
231     while (output_index < bufsize-1) {
232     c = '\0';
233     cpu->memory_rw(cpu, mem, addr+len, &c, sizeof(c), MEM_READ,
234     CACHE_NONE | NO_EXCEPTIONS);
235     buf[output_index] = c;
236     if (c>=' ' && c<127) {
237     len ++;
238     output_index ++;
239     } else if (c=='\n' || c=='\r' || c=='\t') {
240     len ++;
241     buf[output_index] = '\\';
242     output_index ++;
243     switch (c) {
244     case '\n': p = 'n'; break;
245     case '\r': p = 'r'; break;
246     case '\t': p = 't'; break;
247     }
248     if (output_index < bufsize-1) {
249     buf[output_index] = p;
250     output_index ++;
251     }
252     } else {
253     buf[output_index] = '\0';
254     return buf;
255     }
256     }
257    
258     buf[bufsize-1] = '\0';
259     return buf;
260     }
261    
262    
263     /*
264 dpavlin 12 * memory_device_dyntrans_access():
265 dpavlin 2 *
266 dpavlin 22 * Get the lowest and highest dyntrans access since last time.
267 dpavlin 2 */
268 dpavlin 12 void memory_device_dyntrans_access(struct cpu *cpu, struct memory *mem,
269 dpavlin 2 void *extra, uint64_t *low, uint64_t *high)
270     {
271     size_t s;
272 dpavlin 24 int i, need_inval = 0;
273 dpavlin 2
274     /* TODO: This is O(n), so it might be good to rewrite it some day.
275     For now, it will be enough, as long as this function is not
276     called too often. */
277    
278     for (i=0; i<mem->n_mmapped_devices; i++) {
279 dpavlin 32 if (mem->devices[i].extra == extra &&
280     mem->devices[i].flags & DM_DYNTRANS_WRITE_OK &&
281     mem->devices[i].dyntrans_data != NULL) {
282     if (mem->devices[i].dyntrans_write_low != (uint64_t) -1)
283 dpavlin 2 need_inval = 1;
284     if (low != NULL)
285 dpavlin 32 *low = mem->devices[i].dyntrans_write_low;
286     mem->devices[i].dyntrans_write_low = (uint64_t) -1;
287 dpavlin 2
288     if (high != NULL)
289 dpavlin 32 *high = mem->devices[i].dyntrans_write_high;
290     mem->devices[i].dyntrans_write_high = 0;
291 dpavlin 2
292     if (!need_inval)
293     return;
294    
295     /* Invalidate any pages of this device that might
296 dpavlin 12 be in the dyntrans load/store cache, by marking
297 dpavlin 2 the pages read-only. */
298 dpavlin 18 if (cpu->invalidate_translation_caches != NULL) {
299 dpavlin 32 for (s = *low; s <= *high;
300     s += cpu->machine->arch_pagesize)
301 dpavlin 18 cpu->invalidate_translation_caches
302 dpavlin 32 (cpu, mem->devices[i].baseaddr + s,
303 dpavlin 18 JUST_MARK_AS_NON_WRITABLE
304     | INVALIDATE_PADDR);
305 dpavlin 2 }
306    
307     return;
308     }
309     }
310     }
311    
312    
313     /*
314 dpavlin 28 * memory_device_update_data():
315     *
316     * Update a device' dyntrans data pointer.
317     *
318     * SUPER-IMPORTANT NOTE: Anyone who changes a dyntrans data pointer while
319     * things are running also needs to invalidate all CPUs' address translation
320     * caches! Otherwise, these may contain old pointers to the old data.
321     */
322     void memory_device_update_data(struct memory *mem, void *extra,
323     unsigned char *data)
324     {
325     int i;
326    
327     for (i=0; i<mem->n_mmapped_devices; i++) {
328 dpavlin 32 if (mem->devices[i].extra != extra)
329 dpavlin 28 continue;
330    
331 dpavlin 32 mem->devices[i].dyntrans_data = data;
332     mem->devices[i].dyntrans_write_low = (uint64_t)-1;
333     mem->devices[i].dyntrans_write_high = 0;
334 dpavlin 28 }
335     }
336    
337    
338     /*
339 dpavlin 2 * memory_device_register():
340     *
341 dpavlin 32 * Register a memory mapped device.
342 dpavlin 2 */
343     void memory_device_register(struct memory *mem, const char *device_name,
344     uint64_t baseaddr, uint64_t len,
345     int (*f)(struct cpu *,struct memory *,uint64_t,unsigned char *,
346     size_t,int,void *),
347 dpavlin 12 void *extra, int flags, unsigned char *dyntrans_data)
348 dpavlin 2 {
349 dpavlin 22 int i, newi = 0;
350 dpavlin 2
351 dpavlin 22 /*
352     * Figure out at which index to insert this device, and simultaneously
353     * check for collisions:
354     */
355     newi = -1;
356 dpavlin 2 for (i=0; i<mem->n_mmapped_devices; i++) {
357 dpavlin 32 if (i == 0 && baseaddr + len <= mem->devices[i].baseaddr)
358 dpavlin 22 newi = i;
359 dpavlin 32 if (i > 0 && baseaddr + len <= mem->devices[i].baseaddr &&
360     baseaddr >= mem->devices[i-1].endaddr)
361 dpavlin 22 newi = i;
362     if (i == mem->n_mmapped_devices - 1 &&
363 dpavlin 32 baseaddr >= mem->devices[i].endaddr)
364 dpavlin 22 newi = i + 1;
365    
366 dpavlin 32 /* If this is not colliding with device i, then continue: */
367     if (baseaddr + len <= mem->devices[i].baseaddr)
368 dpavlin 2 continue;
369 dpavlin 32 if (baseaddr >= mem->devices[i].endaddr)
370 dpavlin 2 continue;
371    
372 dpavlin 22 fatal("\nERROR! \"%s\" collides with device %i (\"%s\")!\n",
373 dpavlin 32 device_name, i, mem->devices[i].name);
374 dpavlin 22 exit(1);
375 dpavlin 2 }
376 dpavlin 22 if (mem->n_mmapped_devices == 0)
377     newi = 0;
378     if (newi == -1) {
379     fatal("INTERNAL ERROR\n");
380     exit(1);
381     }
382 dpavlin 2
383 dpavlin 22 if (verbose >= 2) {
384     /* (40 bits of physical address is displayed) */
385 dpavlin 24 debug("device at 0x%010"PRIx64": %s", (uint64_t) baseaddr,
386 dpavlin 22 device_name);
387 dpavlin 2
388 dpavlin 22 if (flags & (DM_DYNTRANS_OK | DM_DYNTRANS_WRITE_OK)
389     && (baseaddr & mem->dev_dyntrans_alignment) != 0) {
390     fatal("\nWARNING: Device dyntrans access, but unaligned"
391 dpavlin 24 " baseaddr 0x%"PRIx64".\n", (uint64_t) baseaddr);
392 dpavlin 22 }
393    
394     if (flags & (DM_DYNTRANS_OK | DM_DYNTRANS_WRITE_OK)) {
395     debug(" (dyntrans %s)",
396     (flags & DM_DYNTRANS_WRITE_OK)? "R/W" : "R");
397     }
398     debug("\n");
399 dpavlin 2 }
400    
401 dpavlin 22 for (i=0; i<mem->n_mmapped_devices; i++) {
402 dpavlin 32 if (dyntrans_data == mem->devices[i].dyntrans_data &&
403     mem->devices[i].flags&(DM_DYNTRANS_OK|DM_DYNTRANS_WRITE_OK)
404 dpavlin 22 && flags & (DM_DYNTRANS_OK | DM_DYNTRANS_WRITE_OK)) {
405     fatal("ERROR: the data pointer used for dyntrans "
406     "accesses must only be used once!\n");
407     fatal("(%p cannot be used by '%s'; already in use by '"
408     "%s')\n", dyntrans_data, device_name,
409 dpavlin 32 mem->devices[i].name);
410 dpavlin 22 exit(1);
411     }
412 dpavlin 2 }
413    
414 dpavlin 22 mem->n_mmapped_devices++;
415 dpavlin 2
416 dpavlin 42 CHECK_ALLOCATION(mem->devices = realloc(mem->devices,
417     sizeof(struct memory_device) * mem->n_mmapped_devices));
418 dpavlin 32
419 dpavlin 22 /* Make space for the new entry: */
420 dpavlin 32 if (newi + 1 != mem->n_mmapped_devices)
421     memmove(&mem->devices[newi+1], &mem->devices[newi],
422     sizeof(struct memory_device)
423     * (mem->n_mmapped_devices - newi - 1));
424 dpavlin 22
425 dpavlin 42 CHECK_ALLOCATION(mem->devices[newi].name = strdup(device_name));
426 dpavlin 32 mem->devices[newi].baseaddr = baseaddr;
427     mem->devices[newi].endaddr = baseaddr + len;
428     mem->devices[newi].length = len;
429     mem->devices[newi].flags = flags;
430     mem->devices[newi].dyntrans_data = dyntrans_data;
431 dpavlin 22
432 dpavlin 20 if (flags & (DM_DYNTRANS_OK | DM_DYNTRANS_WRITE_OK)
433     && !(flags & DM_EMULATED_RAM) && dyntrans_data == NULL) {
434 dpavlin 12 fatal("\nERROR: Device dyntrans access, but dyntrans_data"
435     " = NULL!\n");
436     exit(1);
437     }
438    
439 dpavlin 18 if ((size_t)dyntrans_data & (sizeof(void *) - 1)) {
440 dpavlin 2 fprintf(stderr, "memory_device_register():"
441 dpavlin 12 " dyntrans_data not aligned correctly (%p)\n",
442     dyntrans_data);
443 dpavlin 2 exit(1);
444     }
445    
446 dpavlin 32 mem->devices[newi].dyntrans_write_low = (uint64_t)-1;
447     mem->devices[newi].dyntrans_write_high = 0;
448     mem->devices[newi].f = f;
449     mem->devices[newi].extra = extra;
450 dpavlin 2
451     if (baseaddr < mem->mmap_dev_minaddr)
452 dpavlin 12 mem->mmap_dev_minaddr = baseaddr & ~mem->dev_dyntrans_alignment;
453 dpavlin 2 if (baseaddr + len > mem->mmap_dev_maxaddr)
454 dpavlin 12 mem->mmap_dev_maxaddr = (((baseaddr + len) - 1) |
455     mem->dev_dyntrans_alignment) + 1;
456 dpavlin 32
457     if (newi < mem->last_accessed_device)
458     mem->last_accessed_device ++;
459 dpavlin 2 }
460    
461    
462     /*
463     * memory_device_remove():
464     *
465 dpavlin 32 * Unregister a memory mapped device from a memory object.
466 dpavlin 2 */
467     void memory_device_remove(struct memory *mem, int i)
468     {
469     if (i < 0 || i >= mem->n_mmapped_devices) {
470     fatal("memory_device_remove(): invalid device number %i\n", i);
471 dpavlin 32 exit(1);
472 dpavlin 2 }
473    
474     mem->n_mmapped_devices --;
475    
476     if (i == mem->n_mmapped_devices)
477     return;
478    
479 dpavlin 32 memmove(&mem->devices[i], &mem->devices[i+1],
480     sizeof(struct memory_device) * (mem->n_mmapped_devices - i));
481 dpavlin 2
482 dpavlin 32 if (i <= mem->last_accessed_device)
483     mem->last_accessed_device --;
484     if (mem->last_accessed_device < 0)
485     mem->last_accessed_device = 0;
486 dpavlin 2 }
487    
488    
489     #define MEMORY_RW userland_memory_rw
490     #define MEM_USERLAND
491     #include "memory_rw.c"
492     #undef MEM_USERLAND
493     #undef MEMORY_RW
494    
495    
496     /*
497     * memory_paddr_to_hostaddr():
498     *
499 dpavlin 28 * Translate a physical address into a host address. The usual way to call
500     * this function is to make sure that paddr is page aligned, which will result
501     * in the host _page_ corresponding to that address.
502 dpavlin 2 *
503 dpavlin 28 * Return value is a pointer to the address in the host, or NULL on failure.
504 dpavlin 2 * On reads, a NULL return value should be interpreted as reading all zeroes.
505     */
506     unsigned char *memory_paddr_to_hostaddr(struct memory *mem,
507     uint64_t paddr, int writeflag)
508     {
509     void **table;
510     int entry;
511     const int mask = (1 << BITS_PER_PAGETABLE) - 1;
512     const int shrcount = MAX_BITS - BITS_PER_PAGETABLE;
513 dpavlin 28 unsigned char *hostptr;
514 dpavlin 2
515     table = mem->pagetable;
516     entry = (paddr >> shrcount) & mask;
517    
518 dpavlin 24 /* printf("memory_paddr_to_hostaddr(): p=%16"PRIx64
519     " w=%i => entry=0x%x\n", (uint64_t) paddr, writeflag, entry); */
520 dpavlin 2
521     if (table[entry] == NULL) {
522     size_t alloclen;
523    
524     /*
525     * Special case: reading from a nonexistant memblock
526     * returns all zeroes, and doesn't allocate anything.
527     * (If any intermediate pagetable is nonexistant, then
528     * the same thing happens):
529     */
530     if (writeflag == MEM_READ)
531     return NULL;
532    
533     /* Allocate a memblock: */
534     alloclen = 1 << BITS_PER_MEMBLOCK;
535    
536     /* printf(" allocating for entry %i, len=%i\n",
537     entry, alloclen); */
538    
539     /* Anonymous mmap() should return zero-filled memory,
540     try malloc + memset if mmap failed. */
541     table[entry] = (void *) mmap(NULL, alloclen,
542 dpavlin 22 PROT_READ | PROT_WRITE, MAP_ANON | MAP_PRIVATE, -1, 0);
543 dpavlin 2 if (table[entry] == NULL) {
544 dpavlin 42 CHECK_ALLOCATION(table[entry] = malloc(alloclen));
545 dpavlin 2 memset(table[entry], 0, alloclen);
546     }
547     }
548    
549 dpavlin 28 hostptr = (unsigned char *) table[entry];
550    
551     if (hostptr != NULL)
552     hostptr += (paddr & ((1 << BITS_PER_MEMBLOCK) - 1));
553    
554     return hostptr;
555 dpavlin 2 }
556    
557 dpavlin 24
558     #define UPDATE_CHECKSUM(value) { \
559     internal_state -= 0x118c7771c0c0a77fULL; \
560     internal_state = ((internal_state + (value)) << 7) ^ \
561     (checksum >> 11) ^ ((checksum - (value)) << 3) ^ \
562     (internal_state - checksum) ^ ((value) - internal_state); \
563     checksum ^= internal_state; \
564     }
565    
566    
567     /*
568     * memory_checksum():
569     *
570     * Calculate a 64-bit checksum of everything in a struct memory. This is
571     * useful for tracking down bugs; an old (presumably working) version of
572     * the emulator can be compared to a newer (buggy) version.
573     */
574     uint64_t memory_checksum(struct memory *mem)
575     {
576     uint64_t internal_state = 0x80624185376feff2ULL;
577     uint64_t checksum = 0xcb9a87d5c010072cULL;
578 dpavlin 40 const size_t n_entries = (1 << BITS_PER_PAGETABLE) - 1;
579 dpavlin 24 const size_t len = (1 << BITS_PER_MEMBLOCK) / sizeof(uint64_t);
580     size_t entry, i;
581    
582     for (entry=0; entry<=n_entries; entry++) {
583     uint64_t **table = mem->pagetable;
584     uint64_t *memblock = table[entry];
585    
586     if (memblock == NULL) {
587     UPDATE_CHECKSUM(0x1198ab7c8174a76fULL);
588     continue;
589     }
590    
591     for (i=0; i<len; i++)
592     UPDATE_CHECKSUM(memblock[i]);
593     }
594    
595     return checksum;
596     }
597    
598 dpavlin 34
599     /*
600     * memory_warn_about_unimplemented_addr():
601     *
602     * Called from memory_rw whenever memory outside of the physical address space
603     * is accessed (and quiet_mode isn't set).
604     */
605     void memory_warn_about_unimplemented_addr(struct cpu *cpu, struct memory *mem,
606     int writeflag, uint64_t paddr, uint8_t *data, size_t len)
607     {
608     uint64_t offset, old_pc = cpu->pc;
609     char *symbol;
610    
611     /*
612     * This allows guest OS kernels to probe memory a few KBs past the
613     * end of memory, without giving too many warnings.
614     */
615     if (paddr < mem->physical_max + 0x40000)
616     return;
617    
618     if (!cpu->machine->halt_on_nonexistant_memaccess && quiet_mode)
619     return;
620    
621     fatal("[ memory_rw(): %s ", writeflag? "write":"read");
622    
623     if (writeflag) {
624     unsigned int i;
625     debug("data={", writeflag);
626     if (len > 16) {
627     int start2 = len-16;
628     for (i=0; i<16; i++)
629     debug("%s%02x", i?",":"", data[i]);
630     debug(" .. ");
631     if (start2 < 16)
632     start2 = 16;
633     for (i=start2; i<len; i++)
634     debug("%s%02x", i?",":"", data[i]);
635     } else
636     for (i=0; i<len; i++)
637     debug("%s%02x", i?",":"", data[i]);
638     debug("} ");
639     }
640    
641     fatal("paddr=0x%llx >= physical_max; pc=", (long long)paddr);
642     if (cpu->is_32bit)
643     fatal("0x%08"PRIx32, (uint32_t) old_pc);
644     else
645     fatal("0x%016"PRIx64, (uint64_t) old_pc);
646     symbol = get_symbol_name(&cpu->machine->symbol_context,
647     old_pc, &offset);
648     fatal(" <%s> ]\n", symbol? symbol : " no symbol ");
649    
650     if (cpu->machine->halt_on_nonexistant_memaccess) {
651     /* TODO: Halt in a nicer way. Not possible with the
652     current dyntrans system... */
653     exit(1);
654     }
655     }
656    
657 dpavlin 42
658     /*
659     * dump_mem_string():
660     *
661     * Dump the contents of emulated RAM as readable text. Bytes that aren't
662     * readable are dumped in [xx] notation, where xx is in hexadecimal.
663     * Dumping ends after DUMP_MEM_STRING_MAX bytes, or when a terminating
664     * zero byte is found.
665     */
666     #define DUMP_MEM_STRING_MAX 45
667     void dump_mem_string(struct cpu *cpu, uint64_t addr)
668     {
669     int i;
670     for (i=0; i<DUMP_MEM_STRING_MAX; i++) {
671     unsigned char ch = '\0';
672    
673     cpu->memory_rw(cpu, cpu->mem, addr + i, &ch, sizeof(ch),
674     MEM_READ, CACHE_DATA | NO_EXCEPTIONS);
675     if (ch == '\0')
676     return;
677     if (ch >= ' ' && ch < 126)
678     debug("%c", ch);
679     else
680     debug("[%02x]", ch);
681     }
682     }
683    
684    
685     /*
686     * store_byte():
687     *
688     * Stores a byte in emulated ram. (Helper function.)
689     */
690     void store_byte(struct cpu *cpu, uint64_t addr, uint8_t data)
691     {
692     if ((addr >> 32) == 0)
693     addr = (int64_t)(int32_t)addr;
694     cpu->memory_rw(cpu, cpu->mem,
695     addr, &data, sizeof(data), MEM_WRITE, CACHE_DATA);
696     }
697    
698    
699     /*
700     * store_string():
701     *
702     * Stores chars into emulated RAM until a zero byte (string terminating
703     * character) is found. The zero byte is also copied.
704     * (strcpy()-like helper function, host-RAM-to-emulated-RAM.)
705     */
706     void store_string(struct cpu *cpu, uint64_t addr, char *s)
707     {
708     do {
709     store_byte(cpu, addr++, *s);
710     } while (*s++);
711     }
712    
713    
714     /*
715     * add_environment_string():
716     *
717     * Like store_string(), but advances the pointer afterwards. The most
718     * obvious use is to place a number of strings (such as environment variable
719     * strings) after one-another in emulated memory.
720     */
721     void add_environment_string(struct cpu *cpu, char *s, uint64_t *addr)
722     {
723     store_string(cpu, *addr, s);
724     (*addr) += strlen(s) + 1;
725     }
726    
727    
728     /*
729     * add_environment_string_dual():
730     *
731     * Add "dual" environment strings, one for the variable name and one for the
732     * value, and update pointers afterwards.
733     */
734     void add_environment_string_dual(struct cpu *cpu,
735     uint64_t *ptrp, uint64_t *addrp, char *s1, char *s2)
736     {
737     uint64_t ptr = *ptrp, addr = *addrp;
738    
739     store_32bit_word(cpu, ptr, addr);
740     ptr += sizeof(uint32_t);
741     if (addr != 0) {
742     store_string(cpu, addr, s1);
743     addr += strlen(s1) + 1;
744     }
745     store_32bit_word(cpu, ptr, addr);
746     ptr += sizeof(uint32_t);
747     if (addr != 0) {
748     store_string(cpu, addr, s2);
749     addr += strlen(s2) + 1;
750     }
751    
752     *ptrp = ptr;
753     *addrp = addr;
754     }
755    
756    
757     /*
758     * store_64bit_word():
759     *
760     * Stores a 64-bit word in emulated RAM. Byte order is taken into account.
761     * Helper function.
762     */
763     int store_64bit_word(struct cpu *cpu, uint64_t addr, uint64_t data64)
764     {
765     unsigned char data[8];
766     if ((addr >> 32) == 0)
767     addr = (int64_t)(int32_t)addr;
768     data[0] = (data64 >> 56) & 255;
769     data[1] = (data64 >> 48) & 255;
770     data[2] = (data64 >> 40) & 255;
771     data[3] = (data64 >> 32) & 255;
772     data[4] = (data64 >> 24) & 255;
773     data[5] = (data64 >> 16) & 255;
774     data[6] = (data64 >> 8) & 255;
775     data[7] = (data64) & 255;
776     if (cpu->byte_order == EMUL_LITTLE_ENDIAN) {
777     int tmp = data[0]; data[0] = data[7]; data[7] = tmp;
778     tmp = data[1]; data[1] = data[6]; data[6] = tmp;
779     tmp = data[2]; data[2] = data[5]; data[5] = tmp;
780     tmp = data[3]; data[3] = data[4]; data[4] = tmp;
781     }
782     return cpu->memory_rw(cpu, cpu->mem,
783     addr, data, sizeof(data), MEM_WRITE, CACHE_DATA);
784     }
785    
786    
787     /*
788     * store_32bit_word():
789     *
790     * Stores a 32-bit word in emulated RAM. Byte order is taken into account.
791     * (This function takes a 64-bit word as argument, to suppress some
792     * warnings, but only the lowest 32 bits are used.)
793     */
794     int store_32bit_word(struct cpu *cpu, uint64_t addr, uint64_t data32)
795     {
796     unsigned char data[4];
797    
798     data[0] = (data32 >> 24) & 255;
799     data[1] = (data32 >> 16) & 255;
800     data[2] = (data32 >> 8) & 255;
801     data[3] = (data32) & 255;
802     if (cpu->byte_order == EMUL_LITTLE_ENDIAN) {
803     int tmp = data[0]; data[0] = data[3]; data[3] = tmp;
804     tmp = data[1]; data[1] = data[2]; data[2] = tmp;
805     }
806     return cpu->memory_rw(cpu, cpu->mem,
807     addr, data, sizeof(data), MEM_WRITE, CACHE_DATA);
808     }
809    
810    
811     /*
812     * store_16bit_word():
813     *
814     * Stores a 16-bit word in emulated RAM. Byte order is taken into account.
815     * (This function takes a 64-bit word as argument, to suppress some
816     * warnings, but only the lowest 16 bits are used.)
817     */
818     int store_16bit_word(struct cpu *cpu, uint64_t addr, uint64_t data16)
819     {
820     unsigned char data[2];
821    
822     data[0] = (data16 >> 8) & 255;
823     data[1] = (data16) & 255;
824     if (cpu->byte_order == EMUL_LITTLE_ENDIAN) {
825     int tmp = data[0]; data[0] = data[1]; data[1] = tmp;
826     }
827     return cpu->memory_rw(cpu, cpu->mem,
828     addr, data, sizeof(data), MEM_WRITE, CACHE_DATA);
829     }
830    
831    
832     /*
833     * store_buf():
834     *
835     * memcpy()-like helper function, from host RAM to emulated RAM.
836     */
837     void store_buf(struct cpu *cpu, uint64_t addr, char *s, size_t len)
838     {
839     size_t psize = 1024; /* 1024 256 64 16 4 1 */
840    
841     while (len != 0) {
842     if ((addr & (psize-1)) == 0) {
843     while (len >= psize) {
844     cpu->memory_rw(cpu, cpu->mem, addr,
845     (unsigned char *)s, psize, MEM_WRITE,
846     CACHE_DATA);
847     addr += psize;
848     s += psize;
849     len -= psize;
850     }
851     }
852     psize >>= 2;
853     }
854    
855     while (len-- != 0)
856     store_byte(cpu, addr++, *s++);
857     }
858    
859    
860     /*
861     * store_pointer_and_advance():
862     *
863     * Stores a 32-bit or 64-bit pointer in emulated RAM, and advances the
864     * target address. (Useful for e.g. ARCBIOS environment initialization.)
865     */
866     void store_pointer_and_advance(struct cpu *cpu, uint64_t *addrp,
867     uint64_t data, int flag64)
868     {
869     uint64_t addr = *addrp;
870     if (flag64) {
871     store_64bit_word(cpu, addr, data);
872     addr += 8;
873     } else {
874     store_32bit_word(cpu, addr, data);
875     addr += 4;
876     }
877     *addrp = addr;
878     }
879    
880    
881     /*
882     * load_64bit_word():
883     *
884     * Helper function. Emulated byte order is taken into account.
885     */
886     uint64_t load_64bit_word(struct cpu *cpu, uint64_t addr)
887     {
888     unsigned char data[8];
889    
890     cpu->memory_rw(cpu, cpu->mem,
891     addr, data, sizeof(data), MEM_READ, CACHE_DATA);
892    
893     if (cpu->byte_order == EMUL_LITTLE_ENDIAN) {
894     int tmp = data[0]; data[0] = data[7]; data[7] = tmp;
895     tmp = data[1]; data[1] = data[6]; data[6] = tmp;
896     tmp = data[2]; data[2] = data[5]; data[5] = tmp;
897     tmp = data[3]; data[3] = data[4]; data[4] = tmp;
898     }
899    
900     return
901     ((uint64_t)data[0] << 56) + ((uint64_t)data[1] << 48) +
902     ((uint64_t)data[2] << 40) + ((uint64_t)data[3] << 32) +
903     ((uint64_t)data[4] << 24) + ((uint64_t)data[5] << 16) +
904     ((uint64_t)data[6] << 8) + (uint64_t)data[7];
905     }
906    
907    
908     /*
909     * load_32bit_word():
910     *
911     * Helper function. Emulated byte order is taken into account.
912     */
913     uint32_t load_32bit_word(struct cpu *cpu, uint64_t addr)
914     {
915     unsigned char data[4];
916    
917     cpu->memory_rw(cpu, cpu->mem,
918     addr, data, sizeof(data), MEM_READ, CACHE_DATA);
919    
920     if (cpu->byte_order == EMUL_LITTLE_ENDIAN) {
921     int tmp = data[0]; data[0] = data[3]; data[3] = tmp;
922     tmp = data[1]; data[1] = data[2]; data[2] = tmp;
923     }
924    
925     return (data[0] << 24) + (data[1] << 16) + (data[2] << 8) + data[3];
926     }
927    
928    
929     /*
930     * load_16bit_word():
931     *
932     * Helper function. Emulated byte order is taken into account.
933     */
934     uint16_t load_16bit_word(struct cpu *cpu, uint64_t addr)
935     {
936     unsigned char data[2];
937    
938     cpu->memory_rw(cpu, cpu->mem,
939     addr, data, sizeof(data), MEM_READ, CACHE_DATA);
940    
941     if (cpu->byte_order == EMUL_LITTLE_ENDIAN) {
942     int tmp = data[0]; data[0] = data[1]; data[1] = tmp;
943     }
944    
945     return (data[0] << 8) + data[1];
946     }
947    
948    
949     /*
950     * store_64bit_word_in_host():
951     *
952     * Stores a 64-bit word in the _host's_ RAM. Emulated byte order is taken
953     * into account. This is useful when building structs in the host's RAM
954     * which will later be copied into emulated RAM.
955     */
956     void store_64bit_word_in_host(struct cpu *cpu,
957     unsigned char *data, uint64_t data64)
958     {
959     data[0] = (data64 >> 56) & 255;
960     data[1] = (data64 >> 48) & 255;
961     data[2] = (data64 >> 40) & 255;
962     data[3] = (data64 >> 32) & 255;
963     data[4] = (data64 >> 24) & 255;
964     data[5] = (data64 >> 16) & 255;
965     data[6] = (data64 >> 8) & 255;
966     data[7] = (data64) & 255;
967     if (cpu->byte_order == EMUL_LITTLE_ENDIAN) {
968     int tmp = data[0]; data[0] = data[7]; data[7] = tmp;
969     tmp = data[1]; data[1] = data[6]; data[6] = tmp;
970     tmp = data[2]; data[2] = data[5]; data[5] = tmp;
971     tmp = data[3]; data[3] = data[4]; data[4] = tmp;
972     }
973     }
974    
975    
976     /*
977     * store_32bit_word_in_host():
978     *
979     * See comment for store_64bit_word_in_host().
980     *
981     * (Note: The data32 parameter is a uint64_t. This is done to suppress
982     * some warnings.)
983     */
984     void store_32bit_word_in_host(struct cpu *cpu,
985     unsigned char *data, uint64_t data32)
986     {
987     data[0] = (data32 >> 24) & 255;
988     data[1] = (data32 >> 16) & 255;
989     data[2] = (data32 >> 8) & 255;
990     data[3] = (data32) & 255;
991     if (cpu->byte_order == EMUL_LITTLE_ENDIAN) {
992     int tmp = data[0]; data[0] = data[3]; data[3] = tmp;
993     tmp = data[1]; data[1] = data[2]; data[2] = tmp;
994     }
995     }
996    
997    
998     /*
999     * store_16bit_word_in_host():
1000     *
1001     * See comment for store_64bit_word_in_host().
1002     */
1003     void store_16bit_word_in_host(struct cpu *cpu,
1004     unsigned char *data, uint16_t data16)
1005     {
1006     data[0] = (data16 >> 8) & 255;
1007     data[1] = (data16) & 255;
1008     if (cpu->byte_order == EMUL_LITTLE_ENDIAN) {
1009     int tmp = data[0]; data[0] = data[1]; data[1] = tmp;
1010     }
1011     }
1012    

  ViewVC Help
Powered by ViewVC 1.1.26