/[gxemul]/trunk/src/devices/dev_asc.c
This is repository of my old source code which isn't updated any more. Go to git.rot13.org for current projects!
ViewVC logotype

Contents of /trunk/src/devices/dev_asc.c

Parent Directory Parent Directory | Revision Log Revision Log


Revision 12 - (show annotations)
Mon Oct 8 16:18:38 2007 UTC (16 years, 6 months ago) by dpavlin
File MIME type: text/plain
File size: 31789 byte(s)
++ trunk/HISTORY	(local)
$Id: HISTORY,v 1.905 2005/08/16 09:16:24 debug Exp $
20050628	Continuing the work on the ARM translation engine. end_of_page
		works. Experimenting with load/store translation caches
		(virtual -> physical -> host).
20050629	More ARM stuff (memory access translation cache, mostly). This
		might break a lot of stuff elsewhere, probably some MIPS-
		related translation things.
20050630	Many load/stores are now automatically generated and included
		into cpu_arm_instr.c; 1024 functions in total (!).
		Fixes based on feedback from Alec Voropay: only print 8 hex
		digits instead of 16 in some cases when emulating 32-bit
		machines; similar 8 vs 16 digit fix for breakpoint addresses;
		4Kc has 16 TLB entries, not 48; the MIPS config select1
		register is now printed with "reg ,0".
		Also changing many other occurances of 16 vs 8 digit output.
		Adding cache associativity fields to mips_cpu_types.h; updating
		some other cache fields; making the output of
		mips_cpu_dumpinfo() look nicer.
		Generalizing the bintrans stuff for device accesses to also
		work with the new translation system. (This might also break
		some MIPS things.)
		Adding multi-load/store instructions to the ARM disassembler
		and the translator, and some optimizations of various kinds.
20050701	Adding a simple dev_disk (it can read/write sectors from
		disk images).
20050712	Adding dev_ether (a simple ethernet send/receive device).
		Debugger command "ninstrs" for toggling show_nr_of_instructions
		during runtime.
		Removing the framebuffer logo.
20050713	Continuing on dev_ether.
		Adding a dummy cpu_alpha (again).
20050714	More work on cpu_alpha.
20050715	More work on cpu_alpha. Many instructions work, enough to run
		a simple framebuffer fill test (similar to the ARM test).
20050716	More Alpha stuff.
20050717	Minor updates (Alpha stuff).
20050718	Minor updates (Alpha stuff).
20050719	Generalizing some Alpha instructions.
20050720	More Alpha-related updates.
20050721	Continuing on cpu_alpha. Importing rpb.h from NetBSD/alpha.
20050722	Alpha-related updates: userland stuff (Hello World using
		write() compiled statically for FreeBSD/Alpha runs fine), and
		more instructions are now implemented.
20050723	Fixing ldq_u and stq_u.
		Adding more instructions (conditional moves, masks, extracts,
		shifts).
20050724	More FreeBSD/Alpha userland stuff, and adding some more
		instructions (inserts).
20050725	Continuing on the Alpha stuff. (Adding dummy ldt/stt.)
		Adding a -A command line option to turn off alignment checks
		in some cases (for translated code).
		Trying to remove the old bintrans code which updated the pc
		and nr_of_executed_instructions for every instruction.
20050726	Making another attempt att removing the pc/nr of instructions
		code. This time it worked, huge performance increase for
		artificial test code, but performance loss for real-world
		code :-( so I'm scrapping that code for now.
		Tiny performance increase on Alpha (by using ret instead of
		jmp, to play nice with the Alpha's branch prediction) for the
		old MIPS bintrans backend.
20050727	Various minor fixes and cleanups.
20050728	Switching from a 2-level virtual to host/physical translation
		system for ARM emulation, to a 1-level translation.
		Trying to switch from 2-level to 1-level for the MIPS bintrans
		system as well (Alpha only, so far), but there is at least one
		problem: caches and/or how they work with device mappings.
20050730	Doing the 2-level to 1-level conversion for the i386 backend.
		The cache/device bug is still there for R2K/3K :(
		Various other minor updates (Malta etc).
		The mc146818 clock now updates the UIP bit in a way which works
		better with Linux for at least sgimips and Malta emulation.
		Beginning the work on refactoring the dyntrans system.
20050731	Continuing the dyntrans refactoring.
		Fixing a small but serious host alignment bug in memory_rw.
		Adding support for big-endian load/stores to the i386 bintrans
		backend.
		Another minor i386 bintrans backend update: stores from the
		zero register are now one (or two) loads shorter.
		The slt and sltu instructions were incorrectly implemented for
		the i386 backend; only using them for 32-bit mode for now.
20050801	Continuing the dyntrans refactoring.
		Cleanup of the ns16550 serial controller (removing unnecessary
		code).
		Bugfix (memory corruption bug) in dev_gt, and a patch/hack from
		Alec Voropay for Linux/Malta.
20050802	More cleanup/refactoring of the dyntrans subsystem: adding
		phys_page pointers to the lookup tables, for quick jumps
		between translated pages.
		Better fix for the ns16550 device (but still no real FIFO
		functionality).
		Converting cpu_ppc to the new dyntrans system. This means that
		I will have to start from scratch with implementing each
		instruction, and figure out how to implement dual 64/32-bit
		modes etc.
		Removing the URISC CPU family, because it was useless.
20050803	When selecting a machine type, the main type can now be omitted
		if the subtype name is unique. (I.e. -E can be omitted.)
		Fixing a dyntrans/device update bug. (Writes to offset 0 of
		a device could sometimes go unnoticed.)
		Adding an experimental "instruction combination" hack for
		ARM for memset-like byte fill loops.
20050804	Minor progress on cpu_alpha and related things.
		Finally fixing the MIPS dmult/dmultu bugs.
		Fixing some minor TODOs.
20050805	Generalizing the 8259 PIC. It now also works with Cobalt
		and evbmips emulation, in addition to the x86 hack.
		Finally converting the ns16550 device to use devinit.
		Continuing the work on the dyntrans system. Thinking about
		how to add breakpoints.
20050806	More dyntrans updates. Breakpoints seem to work now.
20050807	Minor updates: cpu_alpha and related things; removing
		dev_malta (as it isn't used any more).
		Dyntrans: working on general "show trace tree" support.
		The trace tree stuff now works with both the old MIPS code and
		with newer dyntrans modes. :)
		Continuing on Alpha-related stuff (trying to get *BSD to boot
		a bit further, adding more instructions, etc).
20050808	Adding a dummy IA64 cpu family, and continuing the refactoring
		of the dyntrans system.
		Removing the regression test stuff, because it was more or
		less useless.
		Adding loadlinked/storeconditional type instructions to the
		Alpha emulation. (Needed for Linux/alpha. Not very well tested
		yet.)
20050809	The function call trace tree now prints a per-function nr of
		arguments. (Semi-meaningless, since that data isn't read yet
		from the ELFs; some hardcoded symbols such as memcpy() and
		strlen() work fine, though.)
		More dyntrans refactoring; taking out more of the things that
		are common to all cpu families.
20050810	Working on adding support for "dual mode" for PPC dyntrans
		(i.e. both 64-bit and 32-bit modes).
		(Re)adding some simple PPC instructions.
20050811	Adding a dummy M68K cpu family. The dyntrans system isn't ready
		for variable-length ISAs yet, so it's completely bogus so far.
		Re-adding more PPC instructions.
		Adding a hack to src/file.c which allows OpenBSD/mac68k a.out
		kernels to be loaded.
		Beginning to add PPC loads/stores. So far they only work in
		32-bit mode.
20050812	The configure file option "add_remote" now accepts symbolic
		host names, in addition to numeric IPv4 addresses.
		Re-adding more PPC instructions.
20050814	Continuing to port back more PPC instructions.
		Found and fixed the cache/device write-update bug for 32-bit
		MIPS bintrans. :-)
		Triggered a really weird and annoying bug in Compaq's C
		compiler; ccc sometimes outputs code which loads from an
		address _before_ checking whether the pointer was NULL or not.
		(I'm not sure how to handle this problem.)
20050815	Removing all of the old x86 instruction execution code; adding
		a new (dummy) dyntrans module for x86.
		Taking the first steps to extend the dyntrans system to support
		variable-length instructions.
		Slowly preparing for the next release.
20050816	Adding a dummy SPARC cpu module.
		Minor updates (documentation etc) for the release.

==============  RELEASE 0.3.5  ==============


1 /*
2 * Copyright (C) 2003-2005 Anders Gavare. All rights reserved.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions are met:
6 *
7 * 1. Redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer.
9 * 2. Redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution.
12 * 3. The name of the author may not be used to endorse or promote products
13 * derived from this software without specific prior written permission.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 *
27 *
28 * $Id: dev_asc.c,v 1.74 2005/07/27 06:57:34 debug Exp $
29 *
30 * 'asc' SCSI controller for some DECstation/DECsystem models, and
31 * for PICA-61.
32 *
33 * Supposed to support SCSI-1 and SCSI-2. I've not yet found any docs
34 * on NCR53C9X, so I'll try to implement this device from LSI53CF92A docs
35 * instead.
36 *
37 *
38 * Memory layout on DECstation:
39 *
40 * NCR53C94 registers at base + 0
41 * DMA address register at base + 0x40000
42 * 128K SRAM buffer at base + 0x80000
43 * ROM at base + 0xc0000
44 *
45 * Memory layout on PICA-61:
46 *
47 * I haven't had time to look this up yet, but length = 0x1000.
48 *
49 *
50 * TODO: This module needs a clean-up, and some testing to see that
51 * it works will all OSes that might use it (NetBSD, OpenBSD,
52 * Ultrix, Linux, Mach, OSF/1, Sprite, ...)
53 */
54
55 #include <stdio.h>
56 #include <stdlib.h>
57 #include <string.h>
58
59 #include "cpu.h"
60 #include "devices.h"
61 #include "diskimage.h"
62 #include "machine.h"
63 #include "memory.h"
64 #include "misc.h"
65
66 #include "ncr53c9xreg.h"
67
68
69 /* #define ASC_DEBUG */
70 /* #define debug fatal */
71 /* #define ASC_FULL_REGISTER_ACCESS_DEBUG */
72 /* static int quiet_mode = 0; */
73
74 #define ASC_TICK_SHIFT 15
75
76 extern int quiet_mode;
77
78
79 #define ASC_FIFO_LEN 16
80 #define STATE_DISCONNECTED 0
81 #define STATE_INITIATOR 1
82 #define STATE_TARGET 2
83
84 #define PHASE_DATA_OUT 0
85 #define PHASE_DATA_IN 1
86 #define PHASE_COMMAND 2
87 #define PHASE_STATUS 3
88 #define PHASE_MSG_OUT 6
89 #define PHASE_MSG_IN 7
90
91
92 /* The controller's SCSI id: */
93 #define ASC_SCSI_ID 7
94
95 #define ASC_DMA_SIZE (128*1024)
96
97 struct asc_data {
98 int mode;
99
100 void *turbochannel;
101 int irq_nr;
102 int irq_caused_last_time;
103
104 /* Current state and transfer: */
105 int cur_state;
106 int cur_phase;
107 struct scsi_transfer *xferp;
108
109 /* FIFO: */
110 unsigned char fifo[ASC_FIFO_LEN];
111 int fifo_in;
112 int fifo_out;
113 int n_bytes_in_fifo; /* cached */
114
115 /* ATN signal: */
116 int atn;
117
118 /* Incoming dma data: */
119 unsigned char *incoming_data;
120 int incoming_len;
121 int incoming_data_addr;
122
123 /* Built-in DMA memory (for DECstation 5000/200): */
124 uint32_t dma_address_reg;
125 unsigned char *dma_address_reg_memory;
126 unsigned char *dma;
127
128 void *dma_controller_data;
129 size_t (*dma_controller)(void *dma_controller_data,
130 unsigned char *data, size_t len, int writeflag);
131
132 /* Read registers and write registers: */
133 uint32_t reg_ro[0x10];
134 uint32_t reg_wo[0x10];
135 };
136
137 /* (READ/WRITE name, if split) */
138 char *asc_reg_names[0x10] = {
139 "NCR_TCL", "NCR_TCM", "NCR_FIFO", "NCR_CMD",
140 "NCR_STAT/NCR_SELID", "NCR_INTR/NCR_TIMEOUT",
141 "NCR_STEP/NCR_SYNCTP", "NCR_FFLAG/NCR_SYNCOFF",
142 "NCR_CFG1", "NCR_CCF", "NCR_TEST", "NCR_CFG2",
143 "NCR_CFG3", "reg_0xd", "NCR_TCH", "reg_0xf"
144 };
145
146
147 /* This is referenced below. */
148 static int dev_asc_select(struct cpu *cpu, struct asc_data *d, int from_id,
149 int to_id, int dmaflag, int n_messagebytes);
150
151
152 /*
153 * dev_asc_tick():
154 *
155 * This function is called "every now and then" from the CPU
156 * main loop.
157 */
158 void dev_asc_tick(struct cpu *cpu, void *extra)
159 {
160 struct asc_data *d = extra;
161
162 if (d->reg_ro[NCR_STAT] & NCRSTAT_INT)
163 cpu_interrupt(cpu, d->irq_nr);
164 }
165
166
167 /*
168 * dev_asc_fifo_flush():
169 *
170 * Flush the fifo.
171 */
172 static void dev_asc_fifo_flush(struct asc_data *d)
173 {
174 d->fifo[0] = 0x00;
175 d->fifo_in = 0;
176 d->fifo_out = 0;
177 d->n_bytes_in_fifo = 0;
178 }
179
180
181 /*
182 * dev_asc_reset():
183 *
184 * Reset the state of the asc.
185 */
186 static void dev_asc_reset(struct asc_data *d)
187 {
188 d->cur_state = STATE_DISCONNECTED;
189 d->atn = 0;
190
191 if (d->xferp != NULL)
192 scsi_transfer_free(d->xferp);
193 d->xferp = NULL;
194
195 dev_asc_fifo_flush(d);
196
197 /* According to table 4.1 in the LSI53CF92A manual: */
198 memset(d->reg_wo, 0, sizeof(d->reg_wo));
199 d->reg_wo[NCR_TCH] = 0x94;
200 d->reg_wo[NCR_CCF] = 2;
201 memcpy(d->reg_ro, d->reg_wo, sizeof(d->reg_ro));
202 d->reg_wo[NCR_SYNCTP] = 5;
203 }
204
205
206 /*
207 * dev_asc_fifo_read():
208 *
209 * Read a byte from the asc FIFO.
210 */
211 static int dev_asc_fifo_read(struct asc_data *d)
212 {
213 int res = d->fifo[d->fifo_out];
214
215 if (d->fifo_in == d->fifo_out)
216 fatal("dev_asc: WARNING! FIFO overrun!\n");
217
218 d->fifo_out = (d->fifo_out + 1) % ASC_FIFO_LEN;
219 d->n_bytes_in_fifo --;
220
221 return res;
222 }
223
224
225 /*
226 * dev_asc_fifo_write():
227 *
228 * Write a byte to the asc FIFO.
229 */
230 static void dev_asc_fifo_write(struct asc_data *d, unsigned char data)
231 {
232 d->fifo[d->fifo_in] = data;
233 d->fifo_in = (d->fifo_in + 1) % ASC_FIFO_LEN;
234 d->n_bytes_in_fifo ++;
235
236 if (d->fifo_in == d->fifo_out)
237 fatal("dev_asc: WARNING! FIFO overrun on write!\n");
238 }
239
240
241 /*
242 * dev_asc_newxfer():
243 *
244 * Allocate memory for a new transfer.
245 */
246 static void dev_asc_newxfer(struct asc_data *d)
247 {
248 if (d->xferp != NULL) {
249 printf("WARNING! dev_asc_newxfer(): freeing previous"
250 " transfer\n");
251 scsi_transfer_free(d->xferp);
252 d->xferp = NULL;
253 }
254
255 d->xferp = scsi_transfer_alloc();
256 #if 0
257 d->xferp->get_data_out = dev_asc_get_data_out;
258 d->xferp->gdo_extra = (void *) d;
259 #endif
260 }
261
262
263 /*
264 * dev_asc_transfer():
265 *
266 * Transfer data from a SCSI device to the controller (or vice versa),
267 * depending on the current phase.
268 *
269 * Returns 1 if ok, 0 on error.
270 */
271 static int dev_asc_transfer(struct cpu *cpu, struct asc_data *d, int dmaflag)
272 {
273 int res = 1, all_done = 1;
274 int len, i, ch;
275
276 if (!quiet_mode)
277 debug(" { TRANSFER to/from id %i: ", d->reg_wo[NCR_SELID] & 7);
278
279 if (d->cur_phase == PHASE_DATA_IN) {
280 /* Data coming into the controller from external device: */
281 if (!dmaflag) {
282 if (d->xferp->data_in == NULL) {
283 fatal("no incoming data?\n");
284 res = 0;
285 } else {
286 /* TODO */
287 fatal("TODO..............\n");
288 len = d->reg_wo[NCR_TCL] +
289 d->reg_wo[NCR_TCM] * 256;
290
291 len--;
292 ch = d->incoming_data[d->incoming_data_addr];
293 debug(" %02x", ch);
294
295 d->incoming_data_addr ++;
296 dev_asc_fifo_write(d, ch);
297
298 if (len == 0) {
299 free(d->incoming_data);
300 d->incoming_data = NULL;
301 }
302
303 d->reg_ro[NCR_TCL] = len & 255;
304 d->reg_ro[NCR_TCM] = (len >> 8) & 255;
305 }
306 } else {
307 /* Copy from the incoming data into dma memory: */
308 if (d->xferp->data_in == NULL) {
309 fatal("no incoming DMA data?\n");
310 res = 0;
311 } else {
312 int len = d->xferp->data_in_len;
313 int len2 = d->reg_wo[NCR_TCL] +
314 d->reg_wo[NCR_TCM] * 256;
315 if (len2 == 0)
316 len2 = 65536;
317
318 if (len < len2) {
319 fatal("{ asc: data in, len=%i len2=%i "
320 "}\n", len, len2);
321 }
322
323 /* TODO: check len2 in a similar way? */
324 if (len + (d->dma_address_reg &
325 (ASC_DMA_SIZE-1)) > ASC_DMA_SIZE)
326 len = ASC_DMA_SIZE -
327 (d->dma_address_reg &
328 (ASC_DMA_SIZE-1));
329
330 if (len2 > len) {
331 memset(d->dma + (d->dma_address_reg &
332 (ASC_DMA_SIZE-1)), 0, len2);
333 len2 = len;
334 }
335
336 #ifdef ASC_DEBUG
337 if (!quiet_mode) {
338 int i;
339 for (i=0; i<len; i++)
340 debug(" %02x", d->xferp->
341 data_in[i]);
342 }
343 #endif
344
345 /*
346 * Are we using an external DMA controller?
347 * Then use it. Otherwise place the data in
348 * the DECstation 5000/200 built-in DMA
349 * region.
350 */
351 if (d->dma_controller != NULL)
352 d->dma_controller(
353 d->dma_controller_data,
354 d->xferp->data_in,
355 len2, 1);
356 else
357 memcpy(d->dma + (d->dma_address_reg &
358 (ASC_DMA_SIZE-1)),
359 d->xferp->data_in, len2);
360
361 if (d->xferp->data_in_len > len2) {
362 unsigned char *n;
363
364 if (d->dma_controller != NULL)
365 printf("WARNING!!!!!!!!! BUG!!!! Unexpected stuff..."
366 "len2=%i d->xferp->data_in_len=%i\n", (int)len2,
367 (int)d->xferp->data_in_len);
368
369 all_done = 0;
370 /* fatal("{ asc: multi-transfer"
371 " data_in, len=%i len2=%i }\n",
372 (int)len, (int)len2); */
373
374 d->xferp->data_in_len -= len2;
375 n = malloc(d->xferp->data_in_len);
376 if (n == NULL) {
377 fprintf(stderr, "out of memory"
378 " in dev_asc\n");
379 exit(1);
380 }
381 memcpy(n, d->xferp->data_in + len2,
382 d->xferp->data_in_len);
383 free(d->xferp->data_in);
384 d->xferp->data_in = n;
385
386 len = len2;
387 }
388
389 len = 0;
390
391 d->reg_ro[NCR_TCL] = len & 255;
392 d->reg_ro[NCR_TCM] = (len >> 8) & 255;
393
394 /* Successful DMA transfer: */
395 d->reg_ro[NCR_STAT] |= NCRSTAT_TC;
396 }
397 }
398 } else if (d->cur_phase == PHASE_DATA_OUT) {
399 /* Data going from the controller to an external device: */
400 if (!dmaflag) {
401 fatal("TODO.......asdgasin\n");
402 } else {
403 /* Copy data from DMA to data_out: */
404 int len = d->xferp->data_out_len;
405 int len2 = d->reg_wo[NCR_TCL] +
406 d->reg_wo[NCR_TCM] * 256;
407 if (len2 == 0)
408 len2 = 65536;
409
410 if (len == 0) {
411 fprintf(stderr, "d->xferp->data_out_len == "
412 "0 ?\n");
413 exit(1);
414 }
415
416 /* TODO: Make sure that len2 doesn't go outside
417 of the dma memory? */
418
419 /* fatal(" data out offset=%5i len=%5i\n",
420 d->xferp->data_out_offset, len2); */
421
422 if (d->xferp->data_out_offset + len2 >
423 d->xferp->data_out_len) {
424 len2 = d->xferp->data_out_len -
425 d->xferp->data_out_offset;
426 }
427
428 /*
429 * Are we using an external DMA controller? Then use
430 * it. Otherwise place the data in the DECstation
431 * 5000/200 built-in DMA region.
432 */
433 if (d->xferp->data_out == NULL) {
434 scsi_transfer_allocbuf(&d->xferp->data_out_len,
435 &d->xferp->data_out, len, 0);
436
437 if (d->dma_controller != NULL)
438 d->dma_controller(
439 d->dma_controller_data,
440 d->xferp->data_out,
441 len2, 0);
442 else
443 memcpy(d->xferp->data_out,
444 d->dma + (d->dma_address_reg &
445 (ASC_DMA_SIZE-1)), len2);
446 d->xferp->data_out_offset = len2;
447 } else {
448 /* Continuing a multi-transfer: */
449 if (d->dma_controller != NULL)
450 d->dma_controller(
451 d->dma_controller_data,
452 d->xferp->data_out +
453 d->xferp->data_out_offset,
454 len2, 0);
455 else
456 memcpy(d->xferp->data_out +
457 d->xferp->data_out_offset,
458 d->dma + (d->dma_address_reg &
459 (ASC_DMA_SIZE-1)), len2);
460 d->xferp->data_out_offset += len2;
461 }
462
463 /* If the disk wants more than we're DMAing,
464 then this is a multitransfer: */
465 if (d->xferp->data_out_offset !=
466 d->xferp->data_out_len) {
467 if (!quiet_mode)
468 debug("[ asc: data_out, multitransfer "
469 "len = %i, len2 = %i ]\n",
470 (int)len, (int)len2);
471 if (d->xferp->data_out_offset >
472 d->xferp->data_out_len)
473 fatal("[ asc data_out dma: too much?"
474 " ]\n");
475 else
476 all_done = 0;
477 }
478
479 #ifdef ASC_DEBUG
480 if (!quiet_mode) {
481 int i;
482 for (i=0; i<len; i++)
483 debug(" %02x", d->xferp->data_out[i]);
484 }
485 #endif
486 len = 0;
487
488 d->reg_ro[NCR_TCL] = len & 255;
489 d->reg_ro[NCR_TCM] = (len >> 8) & 255;
490
491 /* Successful DMA transfer: */
492 d->reg_ro[NCR_STAT] |= NCRSTAT_TC;
493 }
494 } else if (d->cur_phase == PHASE_MSG_OUT) {
495 if (!quiet_mode)
496 debug("MSG OUT: ");
497 /* Data going from the controller to an external device: */
498 if (!dmaflag) {
499 /* There should already be one byte in msg_out, so we
500 just extend the message: */
501 int oldlen = d->xferp->msg_out_len;
502 int newlen;
503
504 if (oldlen != 1) {
505 fatal(" (PHASE OUT MSG len == %i, "
506 "should be 1)\n", oldlen);
507 }
508
509 newlen = oldlen + d->n_bytes_in_fifo;
510 d->xferp->msg_out = realloc(d->xferp->msg_out, newlen);
511 d->xferp->msg_out_len = newlen;
512 if (d->xferp->msg_out == NULL) {
513 fprintf(stderr, "out of memory realloc'ing "
514 "msg_out\n");
515 exit(1);
516 }
517
518 i = oldlen;
519 while (d->fifo_in != d->fifo_out) {
520 ch = dev_asc_fifo_read(d);
521 d->xferp->msg_out[i++] = ch;
522 #ifdef ASC_DEBUG
523 debug("0x%02x ", ch);
524 #endif
525 }
526
527 #ifdef MACH
528 /* Super-ugly hack for Mach/PMAX: TODO: make nicer */
529 if (d->xferp->msg_out_len == 6 &&
530 (d->xferp->msg_out[0] == 0x80 ||
531 d->xferp->msg_out[0] == 0xc0) &&
532 d->xferp->msg_out[1] == 0x01 &&
533 d->xferp->msg_out[2] == 0x03 &&
534 d->xferp->msg_out[3] == 0x01 &&
535 d->xferp->msg_out[4] == 0x32 &&
536 d->xferp->msg_out[5] == 0x0f) {
537 fatal(" !! Mach/PMAX hack !! ");
538 all_done = 0;
539 d->cur_phase = PHASE_MSG_IN;
540 }
541 #endif
542 } else {
543 /* Copy data from DMA to msg_out: */
544 fatal("[ DMA MSG OUT: xxx TODO! ]");
545 /* TODO */
546 res = 0;
547 }
548 } else if (d->cur_phase == PHASE_MSG_IN) {
549 if (!quiet_mode)
550 debug(" MSG IN");
551 fatal("[ MACH HACK! ]");
552 /* Super-ugly hack for Mach/PMAX: TODO: make nicer */
553 dev_asc_fifo_write(d, 0x07);
554 d->cur_phase = PHASE_COMMAND;
555 all_done = 0;
556 } else if (d->cur_phase == PHASE_COMMAND) {
557 if (!quiet_mode)
558 debug(" COMMAND ==> select ");
559 res = dev_asc_select(cpu, d, d->reg_ro[NCR_CFG1] & 7,
560 d->reg_wo[NCR_SELID] & 7, dmaflag, 0);
561 return res;
562 } else {
563 fatal("!!! TODO: unknown/unimplemented phase "
564 "in transfer: %i\n", d->cur_phase);
565 }
566
567 /* Redo the command if data was just sent using DATA_OUT: */
568 if (d->cur_phase == PHASE_DATA_OUT) {
569 res = diskimage_scsicommand(cpu, d->reg_wo[NCR_SELID] & 7,
570 DISKIMAGE_SCSI, d->xferp);
571 }
572
573 if (all_done) {
574 if (d->cur_phase == PHASE_MSG_OUT)
575 d->cur_phase = PHASE_COMMAND;
576 else
577 d->cur_phase = PHASE_STATUS;
578 }
579
580 /*
581 * Cause an interrupt after the transfer:
582 *
583 * NOTE: Earlier I had this in here as well:
584 * d->reg_ro[NCR_INTR] |= NCRINTR_FC;
585 * but Linux/DECstation and OpenBSD/pmax seems to choke on that.
586 */
587 d->reg_ro[NCR_STAT] |= NCRSTAT_INT;
588 d->reg_ro[NCR_INTR] |= NCRINTR_BS;
589 d->reg_ro[NCR_STAT] = (d->reg_ro[NCR_STAT] & ~7) | d->cur_phase;
590 d->reg_ro[NCR_STEP] = (d->reg_ro[NCR_STEP] & ~7) | 4; /* 4? */
591
592 if (!quiet_mode)
593 debug("}");
594 return res;
595 }
596
597
598 /*
599 * dev_asc_select():
600 *
601 * Select a SCSI device, send msg bytes (if any), and send command bytes.
602 * (Call diskimage_scsicommand() to handle the command.)
603 *
604 * Return value: 1 if ok, 0 on error.
605 */
606 static int dev_asc_select(struct cpu *cpu, struct asc_data *d, int from_id,
607 int to_id, int dmaflag, int n_messagebytes)
608 {
609 int ok, len, i, ch;
610
611 if (!quiet_mode)
612 debug(" { SELECT id %i: ", to_id);
613
614 /*
615 * Message bytes, if any:
616 */
617 if (!quiet_mode)
618 debug("msg:");
619
620 if (n_messagebytes > 0) {
621 scsi_transfer_allocbuf(&d->xferp->msg_out_len,
622 &d->xferp->msg_out, n_messagebytes, 0);
623
624 i = 0;
625 while (n_messagebytes-- > 0) {
626 int ch = dev_asc_fifo_read(d);
627 if (!quiet_mode)
628 debug(" %02x", ch);
629 d->xferp->msg_out[i++] = ch;
630 }
631
632 if ((d->xferp->msg_out[0] & 0x7) != 0x00) {
633 debug(" (LUNs not implemented yet: 0x%02x) }",
634 d->xferp->msg_out[0]);
635 return 0;
636 }
637
638 if (((d->xferp->msg_out[0] & ~0x7) != 0xc0) &&
639 ((d->xferp->msg_out[0] & ~0x7) != 0x80)) {
640 fatal(" (Unimplemented msg out: 0x%02x) }",
641 d->xferp->msg_out[0]);
642 return 0;
643 }
644
645 if (d->xferp->msg_out_len > 1) {
646 fatal(" (Long msg out, not implemented yet;"
647 " len=%i) }", d->xferp->msg_out_len);
648 return 0;
649 }
650 } else {
651 if (!quiet_mode)
652 debug(" none");
653 }
654
655 /* Special case: SELATNS (with STOP sequence): */
656 if (d->cur_phase == PHASE_MSG_OUT) {
657 if (!quiet_mode)
658 debug(" MSG OUT DEBUG");
659 if (d->xferp->msg_out_len != 1) {
660 fatal(" (SELATNS: msg out len == %i, should be 1)",
661 d->xferp->msg_out_len);
662 return 0;
663 }
664
665 /* d->cur_phase = PHASE_COMMAND; */
666
667 /* According to the LSI manual: */
668 d->reg_ro[NCR_STAT] |= NCRSTAT_INT;
669 d->reg_ro[NCR_INTR] |= NCRINTR_FC;
670 d->reg_ro[NCR_INTR] |= NCRINTR_BS;
671 d->reg_ro[NCR_STAT] = (d->reg_ro[NCR_STAT] & ~7) | d->cur_phase;
672 d->reg_ro[NCR_STEP] = (d->reg_ro[NCR_STEP] & ~7) | 1;
673
674 if (!quiet_mode)
675 debug("}");
676 return 1;
677 }
678
679 /*
680 * Command bytes:
681 */
682 if (!quiet_mode)
683 debug(", cmd: ");
684
685 if (!dmaflag) {
686 if (!quiet_mode)
687 debug("[non-DMA] ");
688
689 scsi_transfer_allocbuf(&d->xferp->cmd_len,
690 &d->xferp->cmd, d->n_bytes_in_fifo, 0);
691
692 i = 0;
693 while (d->fifo_in != d->fifo_out) {
694 ch = dev_asc_fifo_read(d);
695 d->xferp->cmd[i++] = ch;
696 if (!quiet_mode)
697 debug("%02x ", ch);
698 }
699 } else {
700 if (!quiet_mode)
701 debug("[DMA] ");
702 len = d->reg_wo[NCR_TCL] + d->reg_wo[NCR_TCM] * 256;
703 if (len == 0)
704 len = 65536;
705
706 scsi_transfer_allocbuf(&d->xferp->cmd_len,
707 &d->xferp->cmd, len, 0);
708
709 for (i=0; i<len; i++) {
710 int ofs = d->dma_address_reg + i;
711 ch = d->dma[ofs & (ASC_DMA_SIZE-1)];
712 d->xferp->cmd[i] = ch;
713 if (!quiet_mode)
714 debug("%02x ", ch);
715 }
716
717 d->reg_ro[NCR_TCL] = len & 255;
718 d->reg_ro[NCR_TCM] = (len >> 8) & 255;
719
720 d->reg_ro[NCR_STAT] |= NCRSTAT_TC;
721 }
722
723 /*
724 * Call the SCSI device to perform the command:
725 */
726 ok = diskimage_scsicommand(cpu, to_id, DISKIMAGE_SCSI, d->xferp);
727
728
729 /* Cause an interrupt: */
730 d->reg_ro[NCR_STAT] |= NCRSTAT_INT;
731 d->reg_ro[NCR_INTR] |= NCRINTR_FC;
732 d->reg_ro[NCR_INTR] |= NCRINTR_BS;
733
734 if (ok == 2)
735 d->cur_phase = PHASE_DATA_OUT;
736 else if (d->xferp->data_in != NULL)
737 d->cur_phase = PHASE_DATA_IN;
738 else
739 d->cur_phase = PHASE_STATUS;
740
741 d->reg_ro[NCR_STAT] = (d->reg_ro[NCR_STAT] & ~7) | d->cur_phase;
742 d->reg_ro[NCR_STEP] = (d->reg_ro[NCR_STEP] & ~7) | 4; /* DONE (?) */
743
744 if (!quiet_mode)
745 debug("}");
746
747 return ok;
748 }
749
750
751 /*
752 * dev_asc_address_reg_access():
753 */
754 int dev_asc_address_reg_access(struct cpu *cpu, struct memory *mem,
755 uint64_t relative_addr, unsigned char *data, size_t len,
756 int writeflag, void *extra)
757 {
758 struct asc_data *d = extra;
759
760 if (relative_addr + len > 4)
761 return 0;
762
763 if (writeflag==MEM_READ) {
764 memcpy(data, d->dma_address_reg_memory + relative_addr, len);
765 } else {
766 memcpy(d->dma_address_reg_memory + relative_addr, data, len);
767 }
768
769 return 1;
770 }
771
772
773 /*
774 * dev_asc_dma_access():
775 */
776 int dev_asc_dma_access(struct cpu *cpu, struct memory *mem,
777 uint64_t relative_addr, unsigned char *data, size_t len,
778 int writeflag, void *extra)
779 {
780 struct asc_data *d = extra;
781
782 if (writeflag==MEM_READ) {
783 memcpy(data, d->dma + relative_addr, len);
784 #ifdef ASC_DEBUG
785 {
786 int i;
787 debug("[ asc: read from DMA addr 0x%05x:",
788 (int) relative_addr);
789 for (i=0; i<len; i++)
790 debug(" %02x", data[i]);
791 debug(" ]\n");
792 }
793 #endif
794
795 /* Don't return the common way, as that
796 would overwrite data. */
797 return 1;
798 } else {
799 memcpy(d->dma + relative_addr, data, len);
800 #ifdef ASC_DEBUG
801 {
802 int i;
803 debug("[ asc: write to DMA addr 0x%05x:",
804 (int) relative_addr);
805 for (i=0; i<len; i++)
806 debug(" %02x", data[i]);
807 debug(" ]\n");
808 }
809 #endif
810 /* Quick return. */
811 return 1;
812 }
813 }
814
815
816 /*
817 * dev_asc_access():
818 */
819 int dev_asc_access(struct cpu *cpu, struct memory *mem,
820 uint64_t relative_addr, unsigned char *data, size_t len,
821 int writeflag, void *extra)
822 {
823 int regnr;
824 struct asc_data *d = extra;
825 int target_exists;
826 int n_messagebytes = 0;
827 uint64_t idata = 0, odata = 0;
828
829
830 idata = memory_readmax64(cpu, data, len);
831
832 #if 0
833 /* Debug stuff useful when trying to make dev_asc compatible
834 with the 'arc' emulation mode, which is different from
835 the DECstation mode. */
836 fatal("[ asc: writeflag=%i addr=%08x idata=%016llx ]\n",
837 writeflag, (int)relative_addr, (long long)idata);
838 #endif
839
840 switch (d->mode) {
841 case DEV_ASC_DEC:
842 regnr = relative_addr / 4;
843 break;
844 case DEV_ASC_PICA:
845 default:
846 regnr = relative_addr;
847 }
848
849 /* Controller's ID is fixed: */
850 d->reg_ro[NCR_CFG1] = (d->reg_ro[NCR_CFG1] & ~7) | ASC_SCSI_ID;
851
852 d->reg_ro[NCR_FFLAG] = ((d->reg_ro[NCR_STEP] & 0x7) << 5)
853 + d->n_bytes_in_fifo;
854
855 d->dma_address_reg =
856 d->dma_address_reg_memory[0] +
857 (d->dma_address_reg_memory[1] << 8) +
858 (d->dma_address_reg_memory[2] << 16) +
859 (d->dma_address_reg_memory[3] << 24);
860
861 if (regnr < 0x10) {
862 if (regnr == NCR_FIFO) {
863 if (writeflag == MEM_WRITE)
864 dev_asc_fifo_write(d, idata);
865 else
866 odata = dev_asc_fifo_read(d);
867 } else {
868 if (writeflag==MEM_WRITE)
869 d->reg_wo[regnr] = idata;
870 else
871 odata = d->reg_ro[regnr];
872 }
873
874 #ifdef ASC_FULL_REGISTER_ACCESS_DEBUG
875 if (!quiet_mode) {
876 if (writeflag==MEM_READ) {
877 debug("[ asc: read from %s: 0x%02x",
878 asc_reg_names[regnr], (int)odata);
879 } else {
880 debug("[ asc: write to %s: 0x%02x",
881 asc_reg_names[regnr], (int)idata);
882 }
883 }
884 #endif
885 } else if (relative_addr >= 0x300 && relative_addr < 0x600
886 && d->turbochannel != NULL) {
887 debug("[ asc: offset 0x%x, redirecting to turbochannel"
888 " access ]\n", relative_addr);
889 return dev_turbochannel_access(cpu, mem,
890 relative_addr, data, len, writeflag,
891 d->turbochannel);
892 } else {
893 if (writeflag==MEM_READ) {
894 fatal("[ asc: read from 0x%04x: 0x%02x ]\n",
895 relative_addr, (int)odata);
896 } else {
897 fatal("[ asc: write to 0x%04x: 0x%02x ]\n",
898 relative_addr, (int)idata);
899 }
900 }
901
902 /*
903 * Some registers are read/write. Copy contents of
904 * reg_wo to reg_ro:
905 */
906 #if 0
907 d->reg_ro[ 0] = d->reg_wo[0]; /* Transfer count lo and */
908 d->reg_ro[ 1] = d->reg_wo[1]; /* middle */
909 #endif
910 d->reg_ro[ 2] = d->reg_wo[2];
911 d->reg_ro[ 3] = d->reg_wo[3];
912 d->reg_ro[ 8] = d->reg_wo[8];
913 d->reg_ro[ 9] = d->reg_wo[9];
914 d->reg_ro[10] = d->reg_wo[10];
915 d->reg_ro[11] = d->reg_wo[11];
916 d->reg_ro[12] = d->reg_wo[12];
917
918 if (regnr == NCR_CMD && writeflag == MEM_WRITE) {
919 if (!quiet_mode)
920 debug(" ");
921
922 /* TODO: Perhaps turn off others here too? */
923 d->reg_ro[NCR_INTR] &= ~NCRINTR_SBR;
924
925 if (idata & NCRCMD_DMA) {
926 if (!quiet_mode)
927 debug("[DMA] ");
928
929 /*
930 * DMA commands load the transfer count from the
931 * write-only registers to the read-only ones, and
932 * the Terminal Count bit is cleared.
933 */
934 d->reg_ro[NCR_TCL] = d->reg_wo[NCR_TCL];
935 d->reg_ro[NCR_TCM] = d->reg_wo[NCR_TCM];
936 d->reg_ro[NCR_TCH] = d->reg_wo[NCR_TCH];
937 d->reg_ro[NCR_STAT] &= ~NCRSTAT_TC;
938 }
939
940 switch (idata & ~NCRCMD_DMA) {
941
942 case NCRCMD_NOP:
943 if (!quiet_mode)
944 debug("NOP");
945 break;
946
947 case NCRCMD_FLUSH:
948 if (!quiet_mode)
949 debug("FLUSH");
950 /* Flush the FIFO: */
951 dev_asc_fifo_flush(d);
952 break;
953
954 case NCRCMD_RSTCHIP:
955 if (!quiet_mode)
956 debug("RSTCHIP");
957 /* Hardware reset. */
958 dev_asc_reset(d);
959 break;
960
961 case NCRCMD_RSTSCSI:
962 if (!quiet_mode)
963 debug("RSTSCSI");
964 /* No interrupt if interrupts are disabled. */
965 if (!(d->reg_wo[NCR_CFG1] & NCRCFG1_SRR))
966 d->reg_ro[NCR_STAT] |= NCRSTAT_INT;
967 d->reg_ro[NCR_INTR] |= NCRINTR_SBR;
968 d->reg_ro[NCR_INTR] |= NCRINTR_FC;
969 d->cur_state = STATE_DISCONNECTED;
970 break;
971
972 case NCRCMD_ENSEL:
973 if (!quiet_mode)
974 debug("ENSEL");
975 /* TODO */
976 break;
977
978 case NCRCMD_ICCS:
979 if (!quiet_mode)
980 debug("ICCS");
981 /* Reveice a status byte + a message byte. */
982
983 /* TODO: how about other status and message bytes? */
984 if (d->xferp != NULL && d->xferp->status != NULL)
985 dev_asc_fifo_write(d, d->xferp->status[0]);
986 else
987 dev_asc_fifo_write(d, 0x00);
988
989 if (d->xferp != NULL && d->xferp->msg_in != NULL)
990 dev_asc_fifo_write(d, d->xferp->msg_in[0]);
991 else
992 dev_asc_fifo_write(d, 0x00);
993
994 d->reg_ro[NCR_STAT] |= NCRSTAT_INT;
995 d->reg_ro[NCR_INTR] |= NCRINTR_FC;
996 /* d->reg_ro[NCR_INTR] |= NCRINTR_BS; */
997 d->reg_ro[NCR_STAT] = (d->reg_ro[NCR_STAT] & ~7) | 7;
998 /* ? probably 7 */
999 d->reg_ro[NCR_STEP] = (d->reg_ro[NCR_STEP] & ~7) | 4;
1000 /* ? */
1001 break;
1002
1003 case NCRCMD_MSGOK:
1004 /* Message is being Rejected if ATN is set,
1005 otherwise Accepted. */
1006 if (!quiet_mode) {
1007 debug("MSGOK");
1008 if (d->atn)
1009 debug("; Rejecting message");
1010 else
1011 debug("; Accepting message");
1012 }
1013 d->reg_ro[NCR_STAT] |= NCRSTAT_INT;
1014 d->reg_ro[NCR_INTR] |= NCRINTR_DIS;
1015
1016 d->reg_ro[NCR_STAT] = (d->reg_ro[NCR_STAT] & ~7) |
1017 d->cur_phase; /* 6? */
1018 d->reg_ro[NCR_STEP] = (d->reg_ro[NCR_STEP] & ~7) |
1019 4; /* ? */
1020
1021 d->cur_state = STATE_DISCONNECTED;
1022
1023 if (d->xferp != NULL)
1024 scsi_transfer_free(d->xferp);
1025 d->xferp = NULL;
1026 break;
1027
1028 case NCRCMD_SETATN:
1029 if (!quiet_mode)
1030 debug("SETATN");
1031 d->atn = 1;
1032 break;
1033
1034 case NCRCMD_RSTATN:
1035 if (!quiet_mode)
1036 debug("RSTATN");
1037 d->atn = 0;
1038 break;
1039
1040 case NCRCMD_SELNATN:
1041 case NCRCMD_SELATN:
1042 case NCRCMD_SELATNS:
1043 case NCRCMD_SELATN3:
1044 d->cur_phase = PHASE_COMMAND;
1045 switch (idata & ~NCRCMD_DMA) {
1046 case NCRCMD_SELATN:
1047 case NCRCMD_SELATNS:
1048 if ((idata & ~NCRCMD_DMA) == NCRCMD_SELATNS) {
1049 if (!quiet_mode)
1050 debug("SELATNS: select with "
1051 "atn and stop, id %i",
1052 d->reg_wo[NCR_SELID] & 7);
1053 d->cur_phase = PHASE_MSG_OUT;
1054 } else {
1055 if (!quiet_mode)
1056 debug("SELATN: select with atn"
1057 ", id %i",
1058 d->reg_wo[NCR_SELID] & 7);
1059 }
1060 n_messagebytes = 1;
1061 break;
1062 case NCRCMD_SELATN3:
1063 if (!quiet_mode)
1064 debug("SELNATN: select with atn3, "
1065 "id %i", d->reg_wo[NCR_SELID] & 7);
1066 n_messagebytes = 3;
1067 break;
1068 case NCRCMD_SELNATN:
1069 if (!quiet_mode)
1070 debug("SELNATN: select without atn, "
1071 "id %i", d->reg_wo[NCR_SELID] & 7);
1072 n_messagebytes = 0;
1073 }
1074
1075 /* TODO: not just disk, but some generic
1076 SCSI device */
1077 target_exists = diskimage_exist(cpu->machine,
1078 d->reg_wo[NCR_SELID] & 7, DISKIMAGE_SCSI);
1079
1080 if (target_exists) {
1081 /*
1082 * Select a SCSI device, send message bytes
1083 * (if any) and command bytes to the target.
1084 */
1085 int ok;
1086
1087 dev_asc_newxfer(d);
1088
1089 ok = dev_asc_select(cpu, d,
1090 d->reg_ro[NCR_CFG1] & 7,
1091 d->reg_wo[NCR_SELID] & 7,
1092 idata & NCRCMD_DMA? 1 : 0,
1093 n_messagebytes);
1094
1095 if (ok)
1096 d->cur_state = STATE_INITIATOR;
1097 else {
1098 d->cur_state = STATE_DISCONNECTED;
1099 d->reg_ro[NCR_INTR] |= NCRINTR_DIS;
1100 d->reg_ro[NCR_STAT] |= NCRSTAT_INT;
1101 d->reg_ro[NCR_STEP] =
1102 (d->reg_ro[NCR_STEP] & ~7) | 0;
1103 if (d->xferp != NULL)
1104 scsi_transfer_free(d->xferp);
1105 d->xferp = NULL;
1106 }
1107 } else {
1108 /*
1109 * Selection failed, non-existant scsi ID:
1110 *
1111 * This is good enough to fool Ultrix, NetBSD,
1112 * OpenBSD and Linux to continue detection of
1113 * other IDs, without giving any warnings.
1114 */
1115 d->reg_ro[NCR_STAT] |= NCRSTAT_INT;
1116 d->reg_ro[NCR_INTR] |= NCRINTR_DIS;
1117 d->reg_ro[NCR_STEP] &= ~7;
1118 d->reg_ro[NCR_STEP] |= 0;
1119 dev_asc_fifo_flush(d);
1120 d->cur_state = STATE_DISCONNECTED;
1121 }
1122 break;
1123
1124 case NCRCMD_TRPAD:
1125 if (!quiet_mode)
1126 debug("TRPAD");
1127
1128 dev_asc_newxfer(d);
1129 {
1130 int ok;
1131
1132 ok = dev_asc_transfer(cpu, d,
1133 idata & NCRCMD_DMA? 1 : 0);
1134 if (!ok) {
1135 d->cur_state = STATE_DISCONNECTED;
1136 d->reg_ro[NCR_INTR] |= NCRINTR_DIS;
1137 d->reg_ro[NCR_STAT] |= NCRSTAT_INT;
1138 d->reg_ro[NCR_STEP] = (d->reg_ro[
1139 NCR_STEP] & ~7) | 0;
1140 if (d->xferp != NULL)
1141 scsi_transfer_free(d->xferp);
1142 d->xferp = NULL;
1143 }
1144 }
1145 break;
1146
1147 /* Old code which didn't work with Mach: */
1148 #if 0
1149 d->reg_ro[NCR_STAT] |= NCRSTAT_INT;
1150 d->reg_ro[NCR_INTR] |= NCRINTR_BS;
1151 d->reg_ro[NCR_INTR] |= NCRINTR_FC;
1152 d->reg_ro[NCR_STAT] |= NCRSTAT_TC;
1153
1154 d->reg_ro[NCR_TCL] = 0;
1155 d->reg_ro[NCR_TCM] = 0;
1156
1157 d->reg_ro[NCR_STEP] &= ~7;
1158 #if 0
1159 d->reg_ro[NCR_STEP] |= 0;
1160 dev_asc_fifo_flush(d);
1161 #else
1162 d->reg_ro[NCR_STEP] |= 4;
1163 #endif
1164 break;
1165 #endif
1166
1167 case NCRCMD_TRANS:
1168 if (!quiet_mode)
1169 debug("TRANS");
1170
1171 {
1172 int ok;
1173
1174 ok = dev_asc_transfer(cpu, d,
1175 idata & NCRCMD_DMA? 1 : 0);
1176 if (!ok) {
1177 d->cur_state = STATE_DISCONNECTED;
1178 d->reg_ro[NCR_INTR] |= NCRINTR_DIS;
1179 d->reg_ro[NCR_STAT] |= NCRSTAT_INT;
1180 d->reg_ro[NCR_STEP] = (d->reg_ro[
1181 NCR_STEP] & ~7) | 0;
1182 if (d->xferp != NULL)
1183 scsi_transfer_free(d->xferp);
1184 d->xferp = NULL;
1185 }
1186 }
1187 break;
1188
1189 default:
1190 fatal("(unimplemented asc cmd 0x%02x)", (int)idata);
1191 d->reg_ro[NCR_STAT] |= NCRSTAT_INT;
1192 d->reg_ro[NCR_INTR] |= NCRINTR_ILL;
1193 /*
1194 * TODO: exit or continue with Illegal command
1195 * interrupt?
1196 */
1197 exit(1);
1198 }
1199 }
1200
1201 if (regnr == NCR_INTR && writeflag == MEM_READ) {
1202 /*
1203 * Reading the interrupt register de-asserts the
1204 * interrupt pin. Also, INTR, STEP, and STAT are all
1205 * cleared, according to page 64 of the LSI53CF92A manual,
1206 * if "interrupt output is true".
1207 */
1208 if (d->reg_ro[NCR_STAT] & NCRSTAT_INT) {
1209 d->reg_ro[NCR_INTR] = 0;
1210 d->reg_ro[NCR_STEP] = 0;
1211 d->reg_ro[NCR_STAT] = 0;
1212
1213 /* For Mach/PMAX? TODO */
1214 d->reg_ro[NCR_STAT] = PHASE_COMMAND;
1215 }
1216
1217 cpu_interrupt_ack(cpu, d->irq_nr);
1218 }
1219
1220 if (regnr == NCR_CFG1) {
1221 /* TODO: other bits */
1222 if (!quiet_mode) {
1223 debug(" parity %s,", d->reg_ro[regnr] &
1224 NCRCFG1_PARENB? "enabled" : "disabled");
1225 debug(" scsi_id %i", d->reg_ro[regnr] & 0x7);
1226 }
1227 }
1228
1229 #ifdef ASC_FULL_REGISTER_ACCESS_DEBUG
1230 debug(" ]\n");
1231 #endif
1232 dev_asc_tick(cpu, extra);
1233
1234 if (writeflag == MEM_READ)
1235 memory_writemax64(cpu, data, len, odata);
1236
1237 return 1;
1238 }
1239
1240
1241 /*
1242 * dev_asc_init():
1243 *
1244 * Register an 'asc' device.
1245 */
1246 void dev_asc_init(struct machine *machine, struct memory *mem,
1247 uint64_t baseaddr, int irq_nr, void *turbochannel,
1248 int mode,
1249 size_t (*dma_controller)(void *dma_controller_data,
1250 unsigned char *data, size_t len, int writeflag),
1251 void *dma_controller_data)
1252 {
1253 struct asc_data *d;
1254
1255 d = malloc(sizeof(struct asc_data));
1256 if (d == NULL) {
1257 fprintf(stderr, "out of memory\n");
1258 exit(1);
1259 }
1260 memset(d, 0, sizeof(struct asc_data));
1261 d->irq_nr = irq_nr;
1262 d->turbochannel = turbochannel;
1263 d->mode = mode;
1264
1265 d->reg_ro[NCR_CFG3] = NCRF9XCFG3_CDB;
1266
1267 d->dma_address_reg_memory = malloc(machine->arch_pagesize);
1268 d->dma = malloc(ASC_DMA_SIZE);
1269 if (d->dma == NULL || d->dma_address_reg_memory == NULL) {
1270 fprintf(stderr, "out of memory\n");
1271 exit(1);
1272 }
1273 memset(d->dma_address_reg_memory, 0, machine->arch_pagesize);
1274 memset(d->dma, 0, ASC_DMA_SIZE);
1275
1276 d->dma_controller = dma_controller;
1277 d->dma_controller_data = dma_controller_data;
1278
1279 memory_device_register(mem, "asc", baseaddr,
1280 mode == DEV_ASC_PICA?
1281 DEV_ASC_PICA_LENGTH : DEV_ASC_DEC_LENGTH,
1282 dev_asc_access, d, MEM_DEFAULT, NULL);
1283
1284 if (mode == DEV_ASC_DEC) {
1285 memory_device_register(mem, "asc_dma_address_reg",
1286 baseaddr + 0x40000, 4096, dev_asc_address_reg_access, d,
1287 MEM_DYNTRANS_OK | MEM_DYNTRANS_WRITE_OK,
1288 (unsigned char *)&d->dma_address_reg_memory[0]);
1289 memory_device_register(mem, "asc_dma", baseaddr + 0x80000,
1290 ASC_DMA_SIZE, dev_asc_dma_access, d,
1291 MEM_DYNTRANS_OK | MEM_DYNTRANS_WRITE_OK, d->dma);
1292 }
1293
1294 machine_add_tickfunction(machine, dev_asc_tick, d, ASC_TICK_SHIFT);
1295 }
1296

  ViewVC Help
Powered by ViewVC 1.1.26