/[gxemul]/trunk/src/cpus/cpu_avr_instr.c
This is repository of my old source code which isn't updated any more. Go to git.rot13.org for current projects!
ViewVC logotype

Contents of /trunk/src/cpus/cpu_avr_instr.c

Parent Directory Parent Directory | Revision Log Revision Log


Revision 24 - (show annotations)
Mon Oct 8 16:19:56 2007 UTC (16 years, 6 months ago) by dpavlin
File MIME type: text/plain
File size: 25594 byte(s)
++ trunk/HISTORY	(local)
$Id: HISTORY,v 1.1256 2006/06/23 20:43:44 debug Exp $
20060219	Various minor updates. Removing the old MIPS16 skeleton code,
		because it will need to be rewritten for dyntrans anyway.
20060220-22	Removing the non-working dyntrans backend support.
		Continuing on the 64-bit dyntrans virtual memory generalization.
20060223	More work on the 64-bit vm generalization.
20060225	Beginning on MIPS dyntrans load/store instructions.
		Minor PPC updates (64-bit load/store, etc).
		Fixes for the variable-instruction-length framework, some
		minor AVR updates (a simple Hello World program works!).
		Beginning on a skeleton for automatically generating documen-
		tation (for devices etc.).
20060226	PPC updates (adding some more 64-bit instructions, etc).
		AVR updates (more instructions).
		FINALLY found and fixed the zs bug, making NetBSD/macppc
		accept the serial console.
20060301	Adding more AVR instructions.
20060304	Continuing on AVR-related stuff. Beginning on a framework for
		cycle-accurate device emulation. Adding an experimental "PAL
		TV" device (just a dummy so far).
20060305	Adding more AVR instructions.
		Adding a dummy epcom serial controller (for TS7200 emulation).
20060310	Removing the emul() command from configuration files, so only
		net() and machine() are supported.
		Minor progress on the MIPS dyntrans rewrite.
20060311	Continuing on the MIPS dyntrans rewrite (adding more
		instructions, etc).
20060315	Adding more instructions (sllv, srav, srlv, bgtz[l], blez[l],
		beql, bnel, slti[u], various loads and stores).
20060316	Removing the ALWAYS_SIGNEXTEND_32 option, since it was rarely
		used.
		Adding more MIPS dyntrans instructions, and fixing bugs.
20060318	Implementing fast loads/stores for MIPS dyntrans (big/little
		endian, 32-bit and 64-bit modes).
20060320	Making MIPS dyntrans the default configure option; use
		"--enable-oldmips" to use the old bintrans system.
		Adding MIPS dyntrans dmult[u]; minor updates.
20060322	Continuing... adding some more instructions.
		Adding a simple skeleton for demangling C++ "_ZN" symbols.
20060323	Moving src/debugger.c into a new directory (src/debugger/).
20060324	Fixing the hack used to load PPC ELFs (useful for relocated
		Linux/ppc kernels), and adding a dummy G3 machine mode.
20060325-26	Beginning to experiment with GDB remote serial protocol
		connections; adding a -G command line option for selecting
		which TCP port to listen to.
20060330	Beginning a major cleanup to replace things like "0x%016llx"
		with more correct "0x%016"PRIx64, etc.
		Continuing on the GDB remote serial protocol support.
20060331	More cleanup, and some minor GDB remote progress.
20060402	Adding a hack to the configure script, to allow compilation
		on systems that lack PRIx64 etc.
20060406	Removing the temporary FreeBSD/arm hack in dev_ns16550.c and
		replacing it with a better fix from Olivier Houchard.
20060407	A remote debugger (gdb or ddd) can now start and stop the
		emulator using the GDB remote serial protocol, and registers
		and memory can be read. MIPS only for now.
20060408	More GDB progress: single-stepping also works, and also adding
		support for ARM, PowerPC, and Alpha targets.
		Continuing on the delay-slot-across-page-boundary issue.
20060412	Minor update: beginning to add support for the SPARC target
		to the remote GDB functionality.
20060414	Various MIPS updates: adding more instructions for dyntrans
		(eret, add), and making some exceptions work. Fixing a bug
		in dmult[u].
		Implementing the first SPARC instructions (sethi, or).
20060415	Adding "magic trap" instructions so that PROM calls can be
		software emulated in MIPS dyntrans.
		Adding more MIPS dyntrans instructions (ddiv, dadd) and
		fixing another bug in dmult.
20060416	More MIPS dyntrans progress: adding [d]addi, movn, movz, dsllv,
		rfi, an ugly hack for supporting R2000/R3000 style faked caches,
		preliminary interrupt support, and various other updates and
		bugfixes.
20060417	Adding more SPARC instructions (add, sub, sll[x], sra[x],
		srl[x]), and useful SPARC header definitions.
		Adding the first (trivial) x86/AMD64 dyntrans instructions (nop,
		cli/sti, stc/clc, std/cld, simple mov, inc ax). Various other
		x86 updates related to variable instruction length stuff.
		Adding unaligned loads/stores to the MIPS dyntrans mode (but
		still using the pre-dyntrans (slow) imlementation).
20060419	Fixing a MIPS dyntrans exception-in-delay-slot bug.
		Removing the old "show opcode statistics" functionality, since
		it wasn't really useful and isn't implemented for dyntrans.
		Single-stepping (or running with instruction trace) now looks
		ok with dyntrans with delay-slot architectures.
20060420	Minor hacks (removing the -B command line option when compiled
		for non-bintrans, and some other very minor updates).
		Adding (slow) MIPS dyntrans load-linked/store-conditional.
20060422	Applying fixes for bugs discovered by Nils Weller's nwcc
		(static DEC memmap => now per machine, and adding an extern
		keyword in cpu_arm_instr.c).
		Finally found one of the MIPS dyntrans bugs that I've been
		looking for (copy/paste spelling error BIG vs LITTLE endian in
		cpu_mips_instr_loadstore.c for 16-bit fast stores).
		FINALLY found the major MIPS dyntrans bug: slti vs sltiu
		signed/unsigned code in cpu_mips_instr.c. :-)
		Adding more MIPS dyntrans instructions (lwc1, swc1, bgezal[l],
		ctc1, tlt[u], tge[u], tne, beginning on rdhwr).
		NetBSD/hpcmips can now reach userland when using dyntrans :-)
		Adding some more x86 dyntrans instructions.
		Finally removed the old Alpha-specific virtual memory code,
		and replaced it with the generic 64-bit version.
		Beginning to add disassembly support for SPECIAL3 MIPS opcodes.
20060423	Continuing on the delay-slot-across-page-boundary issue;
		adding an end_of_page2 ic slot (like I had planned before, but
		had removed for some reason).
		Adding a quick-and-dirty fallback to legacy coprocessor 1
		code (i.e. skipping dyntrans implementation for now).
		NetBSD/hpcmips and NetBSD/pmax (when running on an emulated
		R4400) can now be installed and run. :-)  (Many bugs left
		to fix, though.)
		Adding more MIPS dyntrans instructions: madd[u], msub[u].
		Cleaning up the SPECIAL2 vs R5900/TX79/C790 "MMI" opcode
		maps somewhat (disassembly and dyntrans instruction decoding).
20060424	Adding an isa_revision field to mips_cpu_types.h, and making
		sure that SPECIAL3 opcodes cause Reserved Instruction
		exceptions on MIPS32/64 revisions lower than 2.
		Adding the SPARC 'ba', 'call', 'jmpl/retl', 'and', and 'xor'
		instructions.
20060425	Removing the -m command line option ("run at most x 
		instructions") and -T ("single_step_on_bad_addr"), because
		they never worked correctly with dyntrans anyway.
		Freshening up the man page.
20060428	Adding more MIPS dyntrans instructions: bltzal[l], idle.
		Enabling MIPS dyntrans compare interrupts.
20060429	FINALLY found the weird dyntrans bug, causing NetBSD etc. to
		behave strangely: some floating point code (conditional
		coprocessor branches) could not be reused from the old
		non-dyntrans code. The "quick-and-dirty fallback" only appeared
		to work. Fixing by implementing bc1* for MIPS dyntrans.
		More MIPS instructions: [d]sub, sdc1, ldc1, dmtc1, dmfc1, cfc0.
		Freshening up MIPS floating point disassembly appearance.
20060430	Continuing on C790/R5900/TX79 disassembly; implementing 128-bit
		"por" and "pextlw".
20060504	Disabling -u (userland emulation) unless compiled as unstable
		development version.
		Beginning on freshening up the testmachine include files,
		to make it easier to reuse those files (placing them in
		src/include/testmachine/), and beginning on a set of "demos"
		or "tutorials" for the testmachine functionality.
		Minor updates to the MIPS GDB remote protocol stub.
		Refreshing doc/experiments.html and gdb_remote.html.
		Enabling Alpha emulation in the stable release configuration,
		even though no guest OSes for Alpha can run yet.
20060505	Adding a generic 'settings' object, which will contain
		references to settable variables (which will later be possible
		to access using the debugger).
20060506	Updating dev_disk and corresponding demo/documentation (and
		switching from SCSI to IDE disk types, so it actually works
		with current test machines :-).
20060510	Adding a -D_LARGEFILE_SOURCE hack for 64-bit Linux hosts,
		so that fseeko() doesn't give a warning.
		Updating the section about how dyntrans works (the "runnable
		IR") in doc/intro.html.
		Instruction updates (some x64=1 checks, some more R5900
		dyntrans stuff: better mul/mult separation from MIPS32/64,
		adding ei and di).
		Updating MIPS cpuregs.h to a newer one (from NetBSD).
		Adding more MIPS dyntrans instructions: deret, ehb.
20060514	Adding disassembly and beginning implementation of SPARC wr
		and wrpr instructions.
20060515	Adding a SUN SPARC machine mode, with dummy SS20 and Ultra1
		machines. Adding the 32-bit "rd psr" instruction.
20060517	Disassembly support for the general SPARC rd instruction.
		Partial implementation of the cmp (subcc) instruction.
		Some other minor updates (making sure that R5900 processors
		start up with the EIE bit enabled, otherwise Linux/playstation2
		receives no interrupts).
20060519	Minor MIPS updates/cleanups.
20060521	Moving the MeshCube machine into evbmips; this seems to work
		reasonably well with a snapshot of a NetBSD MeshCube kernel.
		Cleanup/fix of MIPS config0 register initialization.
20060529	Minor MIPS fixes, including a sign-extension fix to the
		unaligned load/store code, which makes NetBSD/pmax on R3000
		work better with dyntrans. (Ultrix and Linux/DECstation still
		don't work, though.)
20060530	Minor updates to the Alpha machine mode: adding an AlphaBook
		mode, an LCA bus (forwarding accesses to an ISA bus), etc.
20060531	Applying a bugfix for the MIPS dyntrans sc[d] instruction from
		Ondrej Palkovsky. (Many thanks.)
20060601	Minifix to allow ARM immediate msr instruction to not give
		an error for some valid values.
		More Alpha updates.
20060602	Some minor Alpha updates.
20060603	Adding the Alpha cmpbge instruction. NetBSD/alpha prints its
		first boot messages :-) on an emulated Alphabook 1.
20060612	Minor updates; adding a dev_ether.h include file for the
		testmachine ether device. Continuing the hunt for the dyntrans
		bug which makes Linux and Ultrix on DECstation behave
		strangely... FINALLY found it! It seems to be related to
		invalidation of the translation cache, on tlbw{r,i}. There
		also seems to be some remaining interrupt-related problems.
20060614	Correcting the implementation of ldc1/sdc1 for MIPS dyntrans
		(so that it uses 16 32-bit registers if the FR bit in the
		status register is not set).
20060616	REMOVING BINTRANS COMPLETELY!
		Removing the old MIPS interpretation mode.
		Removing the MFHILO_DELAY and instruction delay stuff, because
		they wouldn't work with dyntrans anyway.
20060617	Some documentation updates (adding "NetBSD-archive" to some
		URLs, and new Debian/DECstation installation screenshots).
		Removing the "tracenull" and "enable-caches" configure options.
		Improving MIPS dyntrans performance somewhat (only invalidate
		translations if necessary, on writes to the entryhi register,
		instead of doing it for all cop0 writes).
20060618	More cleanup after the removal of the old MIPS emulation.
		Trying to fix the MIPS dyntrans performance bugs/bottlenecks;
		only semi-successful so far (for R3000).
20060620	Minor update to allow clean compilation again on Tru64/Alpha.
20060622	MIPS cleanup and fixes (removing the pc_last stuff, which
		doesn't make sense with dyntrans anyway, and fixing a cross-
		page-delay-slot-with-exception case in end_of_page).
		Removing the old max_random_cycles_per_chunk stuff, and the
		concept of cycles vs instructions for MIPS emulation.
		FINALLY found and fixed the bug which caused NetBSD/pmax
		clocks to behave strangely (it was a load to the zero register,
		which was treated as a NOP; now it is treated as a load to a
		dummy scratch register).
20060623	Increasing the dyntrans chunk size back to
		N_SAFE_DYNTRANS_LIMIT, instead of N_SAFE_DYNTRANS_LIMIT/2.
		Preparing for a quick release, even though there are known
		bugs, and performance for non-R3000 MIPS emulation is very
		poor. :-/
		Reverting to half the dyntrans chunk size again, because
		NetBSD/cats seemed less stable with full size chunks. :(
		NetBSD/sgimips 3.0 can now run :-)  (With release 0.3.8, only
		NetBSD/sgimips 2.1 worked, not 3.0.)

==============  RELEASE 0.4.0  ==============


1 /*
2 * Copyright (C) 2005-2006 Anders Gavare. All rights reserved.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions are met:
6 *
7 * 1. Redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer.
9 * 2. Redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution.
12 * 3. The name of the author may not be used to endorse or promote products
13 * derived from this software without specific prior written permission.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 *
27 *
28 * $Id: cpu_avr_instr.c,v 1.15 2006/03/05 16:20:24 debug Exp $
29 *
30 * Atmel AVR (8-bit) instructions.
31 *
32 * Individual functions should keep track of cpu->n_translated_instrs.
33 * (n_translated_instrs is automatically increased by 1 for each function
34 * call. If no instruction was executed, then it should be decreased. If, say,
35 * 4 instructions were combined into one function and executed, then it should
36 * be increased by 3.)
37 */
38
39
40 /*****************************************************************************/
41
42
43 void push_value(struct cpu *cpu, uint32_t value, int len)
44 {
45 unsigned char data[4];
46 data[0] = value; data[1] = value >> 8;
47 data[2] = value >> 16; data[3] = value >> 24;
48 cpu->memory_rw(cpu, cpu->mem, cpu->cd.avr.sp + AVR_SRAM_BASE,
49 data, len, MEM_WRITE, CACHE_DATA);
50 cpu->cd.avr.sp -= len;
51 cpu->cd.avr.sp &= cpu->cd.avr.sram_mask;
52 }
53
54
55 void pop_value(struct cpu *cpu, uint32_t *value, int len)
56 {
57 unsigned char data[4];
58 cpu->cd.avr.sp += len;
59 cpu->cd.avr.sp &= cpu->cd.avr.sram_mask;
60 cpu->memory_rw(cpu, cpu->mem, cpu->cd.avr.sp + AVR_SRAM_BASE,
61 data, len, MEM_READ, CACHE_DATA);
62 *value = data[0];
63 if (len > 1)
64 (*value) += (data[1] << 8);
65 if (len > 2)
66 (*value) += (data[2] << 16);
67 if (len > 3)
68 (*value) += (data[3] << 24);
69 }
70
71
72 /*****************************************************************************/
73
74
75 /*
76 * nop: Do nothing.
77 */
78 X(nop)
79 {
80 }
81
82
83 /*
84 * breq: Conditional relative jump.
85 *
86 * arg[1]: relative offset
87 */
88 X(breq)
89 {
90 uint32_t low_pc;
91
92 if (!(cpu->cd.avr.sreg & AVR_SREG_Z))
93 return;
94
95 cpu->cd.avr.extra_cycles ++;
96
97 /* Calculate new PC from the next instruction + arg[1] */
98 low_pc = ((size_t)ic - (size_t)cpu->cd.avr.cur_ic_page) /
99 sizeof(struct avr_instr_call);
100 cpu->pc &= ~((AVR_IC_ENTRIES_PER_PAGE-1)
101 << AVR_INSTR_ALIGNMENT_SHIFT);
102 cpu->pc += (low_pc << AVR_INSTR_ALIGNMENT_SHIFT);
103 cpu->pc += (int32_t)ic->arg[1];
104
105 /* Find the new physical page and update the translation pointers: */
106 avr_pc_to_pointers(cpu);
107 }
108
109
110 /*
111 * breq_samepage: Continional relative jump (to within the same page).
112 *
113 * arg[1] = pointer to new avr_instr_call
114 */
115 X(breq_samepage)
116 {
117 if (!(cpu->cd.avr.sreg & AVR_SREG_Z))
118 return;
119
120 cpu->cd.avr.extra_cycles ++;
121 cpu->cd.avr.next_ic = (struct avr_instr_call *) ic->arg[1];
122 }
123
124
125 /*
126 * brne: Conditional relative jump.
127 *
128 * arg[1]: relative offset
129 */
130 X(brne)
131 {
132 uint32_t low_pc;
133
134 if (cpu->cd.avr.sreg & AVR_SREG_Z)
135 return;
136
137 cpu->cd.avr.extra_cycles ++;
138
139 /* Calculate new PC from the next instruction + arg[1] */
140 low_pc = ((size_t)ic - (size_t)cpu->cd.avr.cur_ic_page) /
141 sizeof(struct avr_instr_call);
142 cpu->pc &= ~((AVR_IC_ENTRIES_PER_PAGE-1)
143 << AVR_INSTR_ALIGNMENT_SHIFT);
144 cpu->pc += (low_pc << AVR_INSTR_ALIGNMENT_SHIFT);
145 cpu->pc += (int32_t)ic->arg[1];
146
147 /* Find the new physical page and update the translation pointers: */
148 avr_pc_to_pointers(cpu);
149 }
150
151
152 /*
153 * brne_samepage: Continional relative jump (to within the same page).
154 *
155 * arg[1] = pointer to new avr_instr_call
156 */
157 X(brne_samepage)
158 {
159 if (cpu->cd.avr.sreg & AVR_SREG_Z)
160 return;
161
162 cpu->cd.avr.extra_cycles ++;
163 cpu->cd.avr.next_ic = (struct avr_instr_call *) ic->arg[1];
164 }
165
166
167 /*
168 * clX: Clear an sreg bit.
169 */
170 X(clc) { cpu->cd.avr.sreg &= ~AVR_SREG_C; }
171 X(clz) { cpu->cd.avr.sreg &= ~AVR_SREG_Z; }
172 X(cln) { cpu->cd.avr.sreg &= ~AVR_SREG_N; }
173 X(clv) { cpu->cd.avr.sreg &= ~AVR_SREG_V; }
174 X(cls) { cpu->cd.avr.sreg &= ~AVR_SREG_S; }
175 X(clh) { cpu->cd.avr.sreg &= ~AVR_SREG_H; }
176 X(clt) { cpu->cd.avr.sreg &= ~AVR_SREG_T; }
177 X(cli) { cpu->cd.avr.sreg &= ~AVR_SREG_I; }
178
179
180 /*
181 * ldi: Load immediate.
182 *
183 * arg[1]: ptr to register
184 * arg[2]: byte value
185 */
186 X(ldi)
187 {
188 *(uint8_t *)(ic->arg[1]) = ic->arg[2];
189 }
190
191
192 /*
193 * ld_y: Load byte pointed to by register Y into a register.
194 *
195 * arg[1]: ptr to rd
196 */
197 X(ld_y)
198 {
199 cpu->memory_rw(cpu, cpu->mem, AVR_SRAM_BASE + cpu->cd.avr.r[28]
200 + 256*cpu->cd.avr.r[29], (uint8_t *)(ic->arg[1]), 1, MEM_READ,
201 CACHE_DATA);
202 cpu->cd.avr.extra_cycles ++;
203 }
204
205
206 /*
207 * out: Write a byte from a register to I/O space.
208 * (out is the generic function, out_* are special cases.)
209 *
210 * arg[1]: ptr to rr
211 * arg[2]: I/O port nr
212 */
213 X(out)
214 {
215 cpu->memory_rw(cpu, cpu->mem, AVR_SRAM_BASE + ic->arg[2],
216 (uint8_t *)(ic->arg[1]), 1, MEM_WRITE, CACHE_DATA);
217 }
218 X(out_ddra) { cpu->cd.avr.ddra = *(uint8_t *)(ic->arg[1]); }
219 X(out_ddrb) { cpu->cd.avr.ddrb = *(uint8_t *)(ic->arg[1]); }
220 X(out_ddrc) { cpu->cd.avr.ddrc = *(uint8_t *)(ic->arg[1]); }
221 X(out_ddrd) { cpu->cd.avr.ddrd = *(uint8_t *)(ic->arg[1]); }
222 X(out_porta) { cpu->cd.avr.portd_write = *(uint8_t *)(ic->arg[1]); }
223 X(out_portb) { cpu->cd.avr.portd_write = *(uint8_t *)(ic->arg[1]); }
224 X(out_portc) { cpu->cd.avr.portd_write = *(uint8_t *)(ic->arg[1]); }
225 X(out_portd) { cpu->cd.avr.portd_write = *(uint8_t *)(ic->arg[1]); }
226
227
228 /*
229 * adiw: rd+1:rd += constant
230 *
231 * arg[1]: ptr to rd
232 * arg[2]: k
233 */
234 X(adiw)
235 {
236 uint32_t value = *(uint8_t *)(ic->arg[1]) +
237 (*(uint8_t *)(ic->arg[1] + 1) << 8);
238 value += ic->arg[2];
239
240 cpu->cd.avr.sreg &= ~(AVR_SREG_S | AVR_SREG_V | AVR_SREG_N
241 | AVR_SREG_Z | AVR_SREG_C);
242
243 /* TODO: is this V bit calculated correctly? */
244 if (value > 0xffff)
245 cpu->cd.avr.sreg |= AVR_SREG_C | AVR_SREG_V;
246 if (value & 0x8000)
247 cpu->cd.avr.sreg |= AVR_SREG_N;
248 if (value == 0)
249 cpu->cd.avr.sreg |= AVR_SREG_Z;
250
251 if ((cpu->cd.avr.sreg & AVR_SREG_N? 1 : 0) ^
252 (cpu->cd.avr.sreg & AVR_SREG_V? 1 : 0))
253 cpu->cd.avr.sreg |= AVR_SREG_S;
254
255 *(uint8_t *)(ic->arg[1]) = value;
256 *(uint8_t *)(ic->arg[1] + 1) = value >> 8;
257
258 cpu->cd.avr.extra_cycles ++;
259 }
260
261
262 /*
263 * and: rd = rd & rr
264 *
265 * arg[1]: ptr to rr
266 * arg[2]: ptr to rd
267 */
268 X(and)
269 {
270 *(uint8_t *)(ic->arg[2]) &= *(uint8_t *)(ic->arg[1]);
271 cpu->cd.avr.sreg &= ~(AVR_SREG_S | AVR_SREG_V | AVR_SREG_N
272 | AVR_SREG_Z);
273 if (*(uint8_t *)(ic->arg[2]) == 0)
274 cpu->cd.avr.sreg |= AVR_SREG_Z;
275 if (*(uint8_t *)(ic->arg[2]) & 0x80)
276 cpu->cd.avr.sreg |= AVR_SREG_S | AVR_SREG_N;
277 }
278
279
280 /*
281 * eor: rd = rd ^ rr
282 *
283 * arg[1]: ptr to rr
284 * arg[2]: ptr to rd
285 */
286 X(eor)
287 {
288 *(uint8_t *)(ic->arg[2]) ^= *(uint8_t *)(ic->arg[1]);
289 cpu->cd.avr.sreg &= ~(AVR_SREG_S | AVR_SREG_V | AVR_SREG_N
290 | AVR_SREG_Z);
291 if (*(uint8_t *)(ic->arg[2]) == 0)
292 cpu->cd.avr.sreg |= AVR_SREG_Z;
293 if (*(uint8_t *)(ic->arg[2]) & 0x80)
294 cpu->cd.avr.sreg |= AVR_SREG_S | AVR_SREG_N;
295 }
296
297
298 /*
299 * andi: rd = rd & imm
300 *
301 * arg[1]: ptr to rd
302 * arg[2]: imm
303 */
304 X(andi)
305 {
306 uint8_t x = *(uint8_t *)(ic->arg[1]) & ic->arg[2];
307 cpu->cd.avr.sreg &= ~(AVR_SREG_S | AVR_SREG_V | AVR_SREG_N
308 | AVR_SREG_Z);
309 if (x == 0)
310 cpu->cd.avr.sreg |= AVR_SREG_Z;
311 if (x & 0x80)
312 cpu->cd.avr.sreg |= AVR_SREG_S | AVR_SREG_N;
313 *(uint8_t *)(ic->arg[1]) = x;
314 }
315
316
317 /*
318 * cpi: Compare rd with immediate
319 *
320 * arg[1]: ptr to rd
321 * arg[2]: imm
322 */
323 X(cpi)
324 {
325 uint8_t x = *(uint8_t *)(ic->arg[1]), k = ic->arg[2], z = x - k;
326 cpu->cd.avr.sreg &= ~(AVR_SREG_S | AVR_SREG_V | AVR_SREG_N
327 | AVR_SREG_Z | AVR_SREG_H | AVR_SREG_C);
328 if (z == 0)
329 cpu->cd.avr.sreg |= AVR_SREG_Z;
330 if (z & 0x80)
331 cpu->cd.avr.sreg |= AVR_SREG_N;
332 /* TODO: h and v bits! */
333 if (abs((int)k) > abs((int)x))
334 cpu->cd.avr.sreg |= AVR_SREG_C;
335 if ((cpu->cd.avr.sreg & AVR_SREG_N? 1 : 0) ^
336 (cpu->cd.avr.sreg & AVR_SREG_V? 1 : 0))
337 cpu->cd.avr.sreg |= AVR_SREG_S;
338 }
339
340
341 /*
342 * mov: Copy register.
343 *
344 * arg[1]: ptr to rr
345 * arg[2]: ptr to rd
346 */
347 X(mov)
348 {
349 *(uint8_t *)(ic->arg[2]) = *(uint8_t *)(ic->arg[1]);
350 }
351
352
353 /*
354 * sts: Store a register into memory.
355 *
356 * arg[1]: pointer to the register
357 * arg[2]: absolute address (16 bits)
358 */
359 X(sts)
360 {
361 uint8_t r = *(uint8_t *)(ic->arg[1]);
362 if (!cpu->memory_rw(cpu, cpu->mem, ic->arg[2] + AVR_SRAM_BASE,
363 &r, sizeof(uint8_t), MEM_WRITE, CACHE_DATA)) {
364 fatal("sts: write failed: TODO\n");
365 exit(1);
366 }
367 cpu->cd.avr.extra_cycles ++;
368 }
369
370
371 /*
372 * st_y: Store a register into memory at address Y.
373 * st_y_plus: Store a register into memory at address Y, and update Y.
374 * st_minus_y: Same as above, but with pre-decrement instead of post-increment.
375 *
376 * arg[1]: pointer to the register
377 */
378 X(st_y)
379 {
380 uint16_t y = (cpu->cd.avr.r[29] << 8) + cpu->cd.avr.r[28];
381 cpu->memory_rw(cpu, cpu->mem, AVR_SRAM_BASE + y,
382 (uint8_t *)ic->arg[1], sizeof(uint8_t), MEM_WRITE, CACHE_DATA);
383 cpu->cd.avr.extra_cycles ++;
384 }
385 X(st_y_plus)
386 {
387 uint16_t y = (cpu->cd.avr.r[29] << 8) + cpu->cd.avr.r[28];
388 cpu->memory_rw(cpu, cpu->mem, AVR_SRAM_BASE + y,
389 (uint8_t *)ic->arg[1], sizeof(uint8_t), MEM_WRITE, CACHE_DATA);
390 cpu->cd.avr.extra_cycles ++;
391 y ++;
392 cpu->cd.avr.r[29] = y >> 8;
393 cpu->cd.avr.r[28] = y;
394 }
395 X(st_minus_y)
396 {
397 uint16_t y = (cpu->cd.avr.r[29] << 8) + cpu->cd.avr.r[28];
398 y --;
399 cpu->cd.avr.r[29] = y >> 8;
400 cpu->cd.avr.r[28] = y;
401 cpu->memory_rw(cpu, cpu->mem, AVR_SRAM_BASE + y,
402 (uint8_t *)ic->arg[1], sizeof(uint8_t), MEM_WRITE, CACHE_DATA);
403 cpu->cd.avr.extra_cycles ++;
404 }
405
406
407 /*
408 * cbi,sbi: Clear/Set bit in I/O register.
409 *
410 * arg[1]: I/O register number (0..31)
411 * arg[2]: byte mask to and/or into the old value (1, 2, ..., 0x40, or 0x80)
412 */
413 X(cbi)
414 {
415 uint8_t r;
416 cpu->memory_rw(cpu, cpu->mem, ic->arg[1] + AVR_SRAM_BASE,
417 &r, sizeof(uint8_t), MEM_READ, CACHE_DATA);
418 r &= ic->arg[2];
419 cpu->memory_rw(cpu, cpu->mem, ic->arg[1] + AVR_SRAM_BASE,
420 &r, sizeof(uint8_t), MEM_WRITE, CACHE_DATA);
421 cpu->cd.avr.extra_cycles ++;
422 }
423 X(sbi)
424 {
425 uint8_t r;
426 cpu->memory_rw(cpu, cpu->mem, ic->arg[1] + AVR_SRAM_BASE,
427 &r, sizeof(uint8_t), MEM_READ, CACHE_DATA);
428 r |= ic->arg[2];
429 cpu->memory_rw(cpu, cpu->mem, ic->arg[1] + AVR_SRAM_BASE,
430 &r, sizeof(uint8_t), MEM_WRITE, CACHE_DATA);
431 cpu->cd.avr.extra_cycles ++;
432 }
433
434
435 /*
436 * lpm: Load program memory at addess Z into r0.
437 */
438 X(lpm)
439 {
440 uint16_t z = (cpu->cd.avr.r[31] << 8) + cpu->cd.avr.r[30];
441 cpu->memory_rw(cpu, cpu->mem, z, &cpu->cd.avr.r[0],
442 sizeof(uint8_t), MEM_READ, CACHE_DATA);
443 cpu->cd.avr.extra_cycles += 2;
444 }
445
446
447 /*
448 * ret: Return from subroutine call.
449 */
450 X(ret)
451 {
452 uint32_t new_pc;
453
454 cpu->cd.avr.extra_cycles += 3 + cpu->cd.avr.is_22bit;
455
456 /* Pop the address of the following instruction: */
457 pop_value(cpu, &new_pc, 2 + cpu->cd.avr.is_22bit);
458 cpu->pc = new_pc << 1;
459
460 /* Find the new physical page and update the translation pointers: */
461 avr_pc_to_pointers(cpu);
462 }
463
464
465 /*
466 * rcall: Relative call.
467 *
468 * arg[1]: relative offset
469 */
470 X(rcall)
471 {
472 uint32_t low_pc;
473
474 cpu->cd.avr.extra_cycles += 2 + cpu->cd.avr.is_22bit;
475
476 /* Push the address of the following instruction: */
477 low_pc = ((size_t)ic - (size_t)cpu->cd.avr.cur_ic_page) /
478 sizeof(struct avr_instr_call);
479 cpu->pc &= ~((AVR_IC_ENTRIES_PER_PAGE-1)
480 << AVR_INSTR_ALIGNMENT_SHIFT);
481 cpu->pc += (low_pc << AVR_INSTR_ALIGNMENT_SHIFT);
482 push_value(cpu, (cpu->pc >> 1) + 1, 2 + cpu->cd.avr.is_22bit);
483
484 /* Calculate new PC from the next instruction + arg[1] */
485 cpu->pc += (int32_t)ic->arg[1];
486
487 /* Find the new physical page and update the translation pointers: */
488 avr_pc_to_pointers(cpu);
489 }
490
491
492 /*
493 * rjmp: Relative jump.
494 *
495 * arg[1]: relative offset
496 */
497 X(rjmp)
498 {
499 uint32_t low_pc;
500
501 cpu->cd.avr.extra_cycles ++;
502
503 /* Calculate new PC from the next instruction + arg[1] */
504 low_pc = ((size_t)ic - (size_t)cpu->cd.avr.cur_ic_page) /
505 sizeof(struct avr_instr_call);
506 cpu->pc &= ~((AVR_IC_ENTRIES_PER_PAGE-1)
507 << AVR_INSTR_ALIGNMENT_SHIFT);
508 cpu->pc += (low_pc << AVR_INSTR_ALIGNMENT_SHIFT);
509 cpu->pc += (int32_t)ic->arg[1];
510
511 /* Find the new physical page and update the translation pointers: */
512 avr_pc_to_pointers(cpu);
513 }
514
515
516 /*
517 * rjmp_samepage: Relative jump (to within the same translated page).
518 *
519 * arg[1] = pointer to new avr_instr_call
520 */
521 X(rjmp_samepage)
522 {
523 cpu->cd.avr.extra_cycles ++;
524 cpu->cd.avr.next_ic = (struct avr_instr_call *) ic->arg[1];
525 }
526
527
528 /*
529 * seX: Set an sreg bit.
530 */
531 X(sec) { cpu->cd.avr.sreg |= AVR_SREG_C; }
532 X(sez) { cpu->cd.avr.sreg |= AVR_SREG_Z; }
533 X(sen) { cpu->cd.avr.sreg |= AVR_SREG_N; }
534 X(sev) { cpu->cd.avr.sreg |= AVR_SREG_V; }
535 X(ses) { cpu->cd.avr.sreg |= AVR_SREG_S; }
536 X(seh) { cpu->cd.avr.sreg |= AVR_SREG_H; }
537 X(set) { cpu->cd.avr.sreg |= AVR_SREG_T; }
538 X(sei) { cpu->cd.avr.sreg |= AVR_SREG_I; }
539
540
541 /*
542 * push, pop: Push/pop a register onto/from the stack.
543 *
544 * arg[1]: ptr to rd
545 */
546 X(push) { push_value(cpu, *(uint8_t *)(ic->arg[1]), 1);
547 cpu->cd.avr.extra_cycles ++; }
548 X(pop) { uint32_t t; pop_value(cpu, &t, 1); *(uint8_t *)(ic->arg[1]) = t;
549 cpu->cd.avr.extra_cycles ++; }
550
551
552 /*
553 * inc, dec: Increment/decrement a register.
554 *
555 * arg[1]: ptr to rd
556 */
557 X(inc)
558 {
559 uint8_t x = *(uint8_t *)(ic->arg[1]) + 1;
560 cpu->cd.avr.sreg &= ~(AVR_SREG_S | AVR_SREG_V | AVR_SREG_N
561 | AVR_SREG_Z);
562 if (x == 0)
563 cpu->cd.avr.sreg |= AVR_SREG_Z;
564 if (x == 0x80)
565 cpu->cd.avr.sreg |= AVR_SREG_V;
566 if (x & 0x80)
567 cpu->cd.avr.sreg |= AVR_SREG_N;
568 if ((cpu->cd.avr.sreg & AVR_SREG_N? 1 : 0) ^
569 (cpu->cd.avr.sreg & AVR_SREG_V? 1 : 0))
570 cpu->cd.avr.sreg |= AVR_SREG_S;
571 *(uint8_t *)(ic->arg[1]) = x;
572 }
573 X(dec)
574 {
575 uint8_t x = *(uint8_t *)(ic->arg[1]) - 1;
576 cpu->cd.avr.sreg &= ~(AVR_SREG_S | AVR_SREG_V | AVR_SREG_N
577 | AVR_SREG_Z);
578 if (x == 0)
579 cpu->cd.avr.sreg |= AVR_SREG_Z;
580 if (x == 0x7f)
581 cpu->cd.avr.sreg |= AVR_SREG_V;
582 if (x & 0x80)
583 cpu->cd.avr.sreg |= AVR_SREG_N;
584 if ((cpu->cd.avr.sreg & AVR_SREG_N? 1 : 0) ^
585 (cpu->cd.avr.sreg & AVR_SREG_V? 1 : 0))
586 cpu->cd.avr.sreg |= AVR_SREG_S;
587 *(uint8_t *)(ic->arg[1]) = x;
588 }
589
590
591 /*
592 * swap: Swap nibbles in a register.
593 *
594 * arg[1]: ptr to rd
595 */
596 X(swap)
597 {
598 uint8_t x = *(uint8_t *)(ic->arg[1]);
599 *(uint8_t *)(ic->arg[1]) = (x >> 4) | (x << 4);
600 }
601
602
603 /*****************************************************************************/
604
605
606 X(end_of_page)
607 {
608 /* Update the PC: (offset 0, but on the next page) */
609 cpu->pc &= ~((AVR_IC_ENTRIES_PER_PAGE-1) << 1);
610 cpu->pc += (AVR_IC_ENTRIES_PER_PAGE << 1);
611
612 /* Find the new physical page and update the translation pointers: */
613 avr_pc_to_pointers(cpu);
614
615 /* end_of_page doesn't count as an executed instruction: */
616 cpu->n_translated_instrs --;
617 }
618
619
620 /*****************************************************************************/
621
622
623 /*
624 * avr_combine_instructions():
625 *
626 * Combine two or more instructions, if possible, into a single function call.
627 */
628 void avr_combine_instructions(struct cpu *cpu, struct avr_instr_call *ic,
629 uint32_t addr)
630 {
631 int n_back;
632 n_back = (addr >> 1) & (AVR_IC_ENTRIES_PER_PAGE-1);
633
634 if (n_back >= 1) {
635 /* TODO */
636 }
637
638 /* TODO: Combine forward as well */
639 }
640
641
642 /*****************************************************************************/
643
644
645 static uint16_t read_word(struct cpu *cpu, unsigned char *ib, int addr)
646 {
647 uint16_t iword;
648 unsigned char *page = cpu->cd.avr.host_load[addr >> 12];
649
650 if (page != NULL) {
651 /* fatal("TRANSLATION HIT!\n"); */
652 memcpy(ib, page + (addr & 0xfff), sizeof(uint16_t));
653 } else {
654 /* fatal("TRANSLATION MISS!\n"); */
655 if (!cpu->memory_rw(cpu, cpu->mem, addr, ib,
656 sizeof(uint16_t), MEM_READ, CACHE_INSTRUCTION)) {
657 fatal("to_be_translated(): "
658 "read failed: TODO\n");
659 exit(1);
660 }
661 }
662
663 iword = *((uint16_t *)&ib[0]);
664
665 #ifdef HOST_BIG_ENDIAN
666 iword = ((iword & 0xff) << 8) |
667 ((iword & 0xff00) >> 8);
668 #endif
669 return iword;
670 }
671
672
673 /*
674 * avr_instr_to_be_translated():
675 *
676 * Translate an instruction word into an avr_instr_call. ic is filled in with
677 * valid data for the translated instruction, or a "nothing" instruction if
678 * there was a translation failure. The newly translated instruction is then
679 * executed.
680 */
681 X(to_be_translated)
682 {
683 int addr, low_pc, rd, rr, tmp, main_opcode, a;
684 uint16_t iword;
685 unsigned char ib[2];
686 void (*samepage_function)(struct cpu *, struct avr_instr_call *);
687
688 /* Figure out the (virtual) address of the instruction: */
689 low_pc = ((size_t)ic - (size_t)cpu->cd.avr.cur_ic_page)
690 / sizeof(struct avr_instr_call);
691 addr = cpu->pc & ~((AVR_IC_ENTRIES_PER_PAGE-1) <<
692 AVR_INSTR_ALIGNMENT_SHIFT);
693 addr += (low_pc << AVR_INSTR_ALIGNMENT_SHIFT);
694 cpu->pc = addr;
695 addr &= ~((1 << AVR_INSTR_ALIGNMENT_SHIFT) - 1);
696
697 addr &= cpu->cd.avr.pc_mask;
698
699 /* Read the instruction word from memory: */
700 iword = read_word(cpu, ib, addr);
701
702
703 #define DYNTRANS_TO_BE_TRANSLATED_HEAD
704 #include "cpu_dyntrans.c"
705 #undef DYNTRANS_TO_BE_TRANSLATED_HEAD
706
707
708 /* Default instruction length: */
709 ic->arg[0] = 1;
710
711
712 /*
713 * Translate the instruction:
714 */
715 main_opcode = iword >> 12;
716
717 switch (main_opcode) {
718
719 case 0x0:
720 if (iword == 0x0000) {
721 ic->f = instr(nop);
722 break;
723 }
724 goto bad;
725
726 case 0x2:
727 if ((iword & 0xfc00) == 0x2000) {
728 rd = (iword & 0x1f0) >> 4;
729 rr = ((iword & 0x200) >> 5) | (iword & 0xf);
730 ic->f = instr(and);
731 ic->arg[1] = (size_t)(&cpu->cd.avr.r[rr]);
732 ic->arg[2] = (size_t)(&cpu->cd.avr.r[rd]);
733 break;
734 }
735 if ((iword & 0xfc00) == 0x2400) {
736 rd = (iword & 0x1f0) >> 4;
737 rr = ((iword & 0x200) >> 5) | (iword & 0xf);
738 ic->f = instr(eor);
739 ic->arg[1] = (size_t)(&cpu->cd.avr.r[rr]);
740 ic->arg[2] = (size_t)(&cpu->cd.avr.r[rd]);
741 break;
742 }
743 if ((iword & 0xfc00) == 0x2c00) {
744 rd = (iword & 0x1f0) >> 4;
745 rr = ((iword & 0x200) >> 5) | (iword & 0xf);
746 ic->f = instr(mov);
747 ic->arg[1] = (size_t)(&cpu->cd.avr.r[rr]);
748 ic->arg[2] = (size_t)(&cpu->cd.avr.r[rd]);
749 break;
750 }
751 goto bad;
752
753 case 0x3:
754 rd = ((iword >> 4) & 15) + 16;
755 ic->f = instr(cpi);
756 ic->arg[1] = (size_t)(&cpu->cd.avr.r[rd]);
757 ic->arg[2] = ((iword >> 4) & 0xf0) + (iword & 0xf);
758 break;
759
760 case 0x7:
761 rd = ((iword >> 4) & 15) + 16;
762 ic->f = instr(andi);
763 ic->arg[1] = (size_t)(&cpu->cd.avr.r[rd]);
764 ic->arg[2] = ((iword >> 4) & 0xf0) + (iword & 0xf);
765 break;
766
767 case 0x8:
768 if ((iword & 0xfe0f) == 0x8008) {
769 rd = (iword >> 4) & 31;
770 ic->f = instr(ld_y);
771 ic->arg[1] = (size_t)(&cpu->cd.avr.r[rd]);
772 break;
773 }
774 if ((iword & 0xfe0f) == 0x8208) {
775 rd = (iword >> 4) & 31;
776 ic->f = instr(st_y);
777 ic->arg[1] = (size_t)(&cpu->cd.avr.r[rd]);
778 break;
779 }
780 goto bad;
781
782 case 0x9:
783 if ((iword & 0xfe0f) == 0x900f) {
784 rd = (iword >> 4) & 31;
785 ic->f = instr(pop);
786 ic->arg[1] = (size_t)(&cpu->cd.avr.r[rd]);
787 break;
788 }
789 if ((iword & 0xfe0f) == 0x9200) {
790 uint8_t tmpbytes[2];
791 ic->arg[0] = 2; /* Note: 2 words! */
792 ic->f = instr(sts);
793 rd = (iword >> 4) & 31;
794 ic->arg[1] = (size_t)(&cpu->cd.avr.r[rd]);
795 ic->arg[2] = read_word(cpu, tmpbytes, addr + 2);
796 break;
797 }
798 if ((iword & 0xfe0f) == 0x9209) {
799 rd = (iword >> 4) & 31;
800 ic->f = instr(st_y_plus);
801 ic->arg[1] = (size_t)(&cpu->cd.avr.r[rd]);
802 break;
803 }
804 if ((iword & 0xfe0f) == 0x920a) {
805 rd = (iword >> 4) & 31;
806 ic->f = instr(st_minus_y);
807 ic->arg[1] = (size_t)(&cpu->cd.avr.r[rd]);
808 break;
809 }
810 if ((iword & 0xfe0f) == 0x920f) {
811 rd = (iword >> 4) & 31;
812 ic->f = instr(push);
813 ic->arg[1] = (size_t)(&cpu->cd.avr.r[rd]);
814 break;
815 }
816 if ((iword & 0xfe0f) == 0x9402) {
817 rd = (iword >> 4) & 31;
818 ic->f = instr(swap);
819 ic->arg[1] = (size_t)(&cpu->cd.avr.r[rd]);
820 break;
821 }
822 if ((iword & 0xfe0f) == 0x9403) {
823 rd = (iword >> 4) & 31;
824 ic->f = instr(inc);
825 ic->arg[1] = (size_t)(&cpu->cd.avr.r[rd]);
826 break;
827 }
828 if ((iword & 0xff8f) == 0x9408) {
829 switch ((iword >> 4) & 7) {
830 case 0: ic->f = instr(sec); break;
831 case 1: ic->f = instr(sez); break;
832 case 2: ic->f = instr(sen); break;
833 case 3: ic->f = instr(sev); break;
834 case 4: ic->f = instr(ses); break;
835 case 5: ic->f = instr(seh); break;
836 case 6: ic->f = instr(set); break;
837 case 7: ic->f = instr(sei); break;
838 }
839 break;
840 }
841 if ((iword & 0xfe0f) == 0x940a) {
842 rd = (iword >> 4) & 31;
843 ic->f = instr(dec);
844 ic->arg[1] = (size_t)(&cpu->cd.avr.r[rd]);
845 break;
846 }
847 if ((iword & 0xff8f) == 0x9488) {
848 switch ((iword >> 4) & 7) {
849 case 0: ic->f = instr(clc); break;
850 case 1: ic->f = instr(clz); break;
851 case 2: ic->f = instr(cln); break;
852 case 3: ic->f = instr(clv); break;
853 case 4: ic->f = instr(cls); break;
854 case 5: ic->f = instr(clh); break;
855 case 6: ic->f = instr(clt); break;
856 case 7: ic->f = instr(cli); break;
857 }
858 break;
859 }
860 if ((iword & 0xffff) == 0x9508) {
861 ic->f = instr(ret);
862 break;
863 }
864 if ((iword & 0xffff) == 0x95c8) {
865 ic->f = instr(lpm);
866 break;
867 }
868 if ((iword & 0xff00) == 0x9600) {
869 ic->f = instr(adiw);
870 rd = ((iword >> 3) & 6) + 24;
871 ic->arg[1] = (size_t)(&cpu->cd.avr.r[rd]);
872 ic->arg[2] = (iword & 15) + ((iword & 0xc0) >> 2);
873 break;
874 }
875 if ((iword & 0xfd00) == 0x9800) {
876 if (iword & 0x200)
877 ic->f = instr(sbi);
878 else
879 ic->f = instr(cbi);
880 ic->arg[1] = (iword >> 3) & 31;
881 ic->arg[2] = 1 << (iword & 7);
882 if (!(iword & 0x200))
883 ic->arg[2] = ~ic->arg[2];
884 break;
885 }
886 goto bad;
887
888 case 0xb:
889 if ((iword & 0xf800) == 0xb800) {
890 a = ((iword & 0x600) >> 5) | (iword & 0xf);
891 rr = (iword >> 4) & 31;
892 ic->arg[1] = (size_t)(&cpu->cd.avr.r[rr]);
893 ic->arg[2] = a;
894 switch (a) {
895 case 0x1a: ic->f = instr(out_ddra); break;
896 case 0x17: ic->f = instr(out_ddrb); break;
897 case 0x14: ic->f = instr(out_ddrc); break;
898 case 0x11: ic->f = instr(out_ddrd); break;
899 case 0x1b: ic->f = instr(out_porta); break;
900 case 0x18: ic->f = instr(out_portb); break;
901 case 0x15: ic->f = instr(out_portc); break;
902 case 0x12: ic->f = instr(out_portd); break;
903 default:ic->f = instr(out);
904 }
905 break;
906 }
907 goto bad;
908
909 case 0xc: /* rjmp */
910 case 0xd: /* rcall */
911 samepage_function = NULL;
912 switch (main_opcode) {
913 case 0xc:
914 ic->f = instr(rjmp);
915 samepage_function = instr(rjmp_samepage);
916 break;
917 case 0xd:
918 ic->f = instr(rcall);
919 break;
920 }
921 ic->arg[1] = (((int16_t)((iword & 0x0fff) << 4)) >> 3) + 2;
922 /* Special case: branch within the same page: */
923 if (samepage_function != NULL) {
924 uint32_t mask_within_page =
925 ((AVR_IC_ENTRIES_PER_PAGE-1) <<
926 AVR_INSTR_ALIGNMENT_SHIFT) |
927 ((1 << AVR_INSTR_ALIGNMENT_SHIFT) - 1);
928 uint32_t old_pc = addr;
929 uint32_t new_pc = old_pc + (int32_t)ic->arg[1];
930 if ((old_pc & ~mask_within_page) ==
931 (new_pc & ~mask_within_page)) {
932 ic->f = samepage_function;
933 ic->arg[1] = (size_t) (
934 cpu->cd.avr.cur_ic_page +
935 ((new_pc & mask_within_page) >>
936 AVR_INSTR_ALIGNMENT_SHIFT));
937 }
938 }
939 break;
940
941 case 0xe:
942 rd = ((iword >> 4) & 0xf) + 16;
943 ic->f = instr(ldi);
944 ic->arg[1] = (size_t)(&cpu->cd.avr.r[rd]);
945 ic->arg[2] = ((iword >> 4) & 0xf0) | (iword & 0xf);
946 break;
947
948 case 0xf:
949 if ((iword & 0xfc07) == 0xf001) {
950 ic->f = instr(breq);
951 samepage_function = instr(breq_samepage);
952 tmp = (iword >> 3) & 0x7f;
953 if (tmp >= 64)
954 tmp -= 128;
955 ic->arg[1] = (tmp + 1) * 2;
956 /* Special case: branch within the same page: */
957 if (samepage_function != NULL) {
958 uint32_t mask_within_page =
959 ((AVR_IC_ENTRIES_PER_PAGE-1) <<
960 AVR_INSTR_ALIGNMENT_SHIFT) |
961 ((1 << AVR_INSTR_ALIGNMENT_SHIFT) - 1);
962 uint32_t old_pc = addr;
963 uint32_t new_pc = old_pc + (int32_t)ic->arg[1];
964 if ((old_pc & ~mask_within_page) ==
965 (new_pc & ~mask_within_page)) {
966 ic->f = samepage_function;
967 ic->arg[1] = (size_t) (
968 cpu->cd.avr.cur_ic_page +
969 ((new_pc & mask_within_page) >>
970 AVR_INSTR_ALIGNMENT_SHIFT));
971 }
972 }
973 break;
974 }
975 /* TODO: refactor */
976 if ((iword & 0xfc07) == 0xf401) {
977 ic->f = instr(brne);
978 samepage_function = instr(brne_samepage);
979 tmp = (iword >> 3) & 0x7f;
980 if (tmp >= 64)
981 tmp -= 128;
982 ic->arg[1] = (tmp + 1) * 2;
983 /* Special case: branch within the same page: */
984 if (samepage_function != NULL) {
985 uint32_t mask_within_page =
986 ((AVR_IC_ENTRIES_PER_PAGE-1) <<
987 AVR_INSTR_ALIGNMENT_SHIFT) |
988 ((1 << AVR_INSTR_ALIGNMENT_SHIFT) - 1);
989 uint32_t old_pc = addr;
990 uint32_t new_pc = old_pc + (int32_t)ic->arg[1];
991 if ((old_pc & ~mask_within_page) ==
992 (new_pc & ~mask_within_page)) {
993 ic->f = samepage_function;
994 ic->arg[1] = (size_t) (
995 cpu->cd.avr.cur_ic_page +
996 ((new_pc & mask_within_page) >>
997 AVR_INSTR_ALIGNMENT_SHIFT));
998 }
999 }
1000 break;
1001 }
1002 goto bad;
1003
1004 default:goto bad;
1005 }
1006
1007
1008 #define DYNTRANS_TO_BE_TRANSLATED_TAIL
1009 #include "cpu_dyntrans.c"
1010 #undef DYNTRANS_TO_BE_TRANSLATED_TAIL
1011 }
1012

  ViewVC Help
Powered by ViewVC 1.1.26