/[gxemul]/trunk/src/cpu.c
This is repository of my old source code which isn't updated any more. Go to git.rot13.org for current projects!
ViewVC logotype

Contents of /trunk/src/cpu.c

Parent Directory Parent Directory | Revision Log Revision Log


Revision 22 - (show annotations)
Mon Oct 8 16:19:37 2007 UTC (16 years, 6 months ago) by dpavlin
File MIME type: text/plain
File size: 20022 byte(s)
++ trunk/HISTORY	(local)
$Id: HISTORY,v 1.1121 2006/02/18 21:03:08 debug Exp $
20051126	Cobalt and PReP now work with the 21143 NIC.
		Continuing on Alpha dyntrans things.
		Fixing some more left-shift-by-24 to unsigned.
20051127	Working on OpenFirmware emulation; major cleanup/redesign.
		Progress on MacPPC emulation: NetBSD detects two CPUs (when
		running with -n 2), framebuffer output (for text) works.
		Adding quick-hack Bandit PCI controller and "gc" interrupt
		controller for MacPPC.
20051128	Changing from a Bandit to a Uni-North controller for macppc.
		Continuing on OpenFirmware and MacPPC emulation in general
		(obio controller, and wdc attached to the obio seems to work).
20051129	More work on MacPPC emulation (adding a dummy ADB controller).
		Continuing the PCI bus cleanup (endianness and tag composition)
		and rewriting all PCI controllers' access functions.
20051130	Various minor PPC dyntrans optimizations.
		Manually inlining some parts of the framebuffer redraw routine.
		Slowly beginning the conversion of the old MIPS emulation into
		dyntrans (but this will take quite some time to get right).
		Generalizing quick_pc_to_pointers.
20051201	Documentation update (David Muse has made available a kernel
		which simplifies Debian/DECstation installation).
		Continuing on the ADB bus controller.
20051202	Beginning a rewrite of the Zilog serial controller (dev_zs).
20051203	Continuing on the zs rewrite (now called dev_z8530); conversion
		to devinit style.
		Reworking some of the input-only vs output-only vs input-output
		details of src/console.c, better warning messages, and adding
		a debug dump.
		Removing the concept of "device state"; it wasn't really used.
		Changing some debug output (-vv should now be used to show all
		details about devices and busses; not shown during normal
		startup anymore).
		Beginning on some SPARC instruction disassembly support.
20051204	Minor PPC updates (WALNUT skeleton stuff).
		Continuing on the MIPS dyntrans rewrite.
		More progress on the ADB controller (a keyboard is "detected"
		by NetBSD and OpenBSD).
		Downgrading OpenBSD/arc as a guest OS from "working" to
		"almost working" in the documentation.
		Progress on Algor emulation ("v3" PCI controller).
20051205	Minor updates.
20051207	Sorting devices according to address; this reduces complexity
		of device lookups from O(n) to O(log n) in memory_rw (but no
		real performance increase (yet) in experiments).
20051210	Beginning the work on native dyntrans backends (by making a
		simple skeleton; so far only for Alpha hosts).
20051211	Some very minor SPARC updates.
20051215	Fixing a bug in the MIPS mul (note: not mult) instruction,
		so it also works with non-64-bit emulation. (Thanks to Alec
		Voropay for noticing the problem.)
20051216	More work on the fake/empty/simple/skeleton/whatever backend;
		performance doesn't increase, so this isn't really worth it,
		but it was probably worth it to prepare for a real backend
		later.
20051219	More instr call statistics gathering and analysis stuff.
20051220	Another fix for MIPS 'mul'. Also converting mul and {d,}cl{o,z}
		to dyntrans.
		memory_ppc.c syntax error fix (noticed by Peter Valchev).
		Beginning to move out machines from src/machine.c into
		individual files in src/machines (in a way similar to the
		autodev system for devices).
20051222	Updating the documentation regarding NetBSD/pmax 3.0.
20051223	- " - NetBSD/cats 3.0.
20051225	- " - NetBSD/hpcmips 3.0.
20051226	Continuing on the machine registry redesign.
		Adding support for ARM rrx (33-bit rotate).
		Fixing some signed/unsigned issues (exposed by gcc -W).
20051227	Fixing the bug which prevented a NetBSD/prep 3.0 install kernel
		from starting (triggered when an mtmsr was the last instruction
		on a page). Unfortunately not enough to get the kernel to run
		as well as the 2.1 kernels did.
20051230	Some dyntrans refactoring.
20051231	Continuing on the machine registry redesign.
20060101-10	Continuing... moving more machines. Moving MD interrupt stuff
		from machine.c into a new src/machines/interrupts.c.
20060114	Adding various mvmeppc machine skeletons.
20060115	Continuing on mvme* stuff. NetBSD/mvmeppc prints boot messages
		(for MVME1600) and reaches the root device prompt, but no
		specific hardware devices are emulated yet.
20060116	Minor updates to the mvme1600 emulation mode; the Eagle PCI bus
		seems to work without much modification, and a 21143 can be
		detected, interrupts might work (but untested so far).
		Adding a fake MK48Txx (mkclock) device, for NetBSD/mvmeppc.
20060121	Adding an aux control register for ARM. (A BIG thank you to
		Olivier Houchard for tracking down this bug.)
20060122	Adding more ARM instructions (smulXY), and dev_iq80321_7seg.
20060124	Adding disassembly of more ARM instructions (mia*, mra/mar),
		and some semi-bogus XScale and i80321 registers.
20060201-02	Various minor updates. Moving the last machines out of
		machine.c.
20060204	Adding a -c command line option, for running debugger commands
		before the simulation starts, but after all files have been
		loaded.
		Minor iq80321-related updates.
20060209	Minor hacks (DEVINIT macro, etc).
		Preparing for the generalization of the 64-bit dyntrans address
		translation subsystem.
20060216	Adding ARM ldrd (double-register load).
20060217	Continuing on various ARM-related stuff.
20060218	More progress on the ATA/wdc emulation for NetBSD/iq80321.
		NetBSD/evbarm can now be installed :-)  Updating the docs, etc.
		Continuing on Algor emulation.

==============  RELEASE 0.3.8  ==============


1 /*
2 * Copyright (C) 2005-2006 Anders Gavare. All rights reserved.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions are met:
6 *
7 * 1. Redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer.
9 * 2. Redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution.
12 * 3. The name of the author may not be used to endorse or promote products
13 * derived from this software without specific prior written permission.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 *
27 *
28 * $Id: cpu.c,v 1.329 2006/01/16 04:48:08 debug Exp $
29 *
30 * Common routines for CPU emulation. (Not specific to any CPU type.)
31 */
32
33 #include <stdio.h>
34 #include <stdlib.h>
35 #include <sys/types.h>
36 #include <sys/mman.h>
37 #include <string.h>
38
39 #include "cpu.h"
40 #include "machine.h"
41 #include "memory.h"
42 #include "misc.h"
43
44
45 extern int quiet_mode;
46 extern int show_opcode_statistics;
47 extern int dyntrans_backend_enable;
48
49 static struct cpu_family *first_cpu_family = NULL;
50
51
52 /*
53 * cpu_new():
54 *
55 * Create a new cpu object. Each family is tried in sequence until a
56 * CPU family recognizes the cpu_type_name.
57 */
58 struct cpu *cpu_new(struct memory *mem, struct machine *machine,
59 int cpu_id, char *name)
60 {
61 struct cpu *cpu;
62 struct cpu_family *fp;
63 char *cpu_type_name;
64
65 if (name == NULL) {
66 fprintf(stderr, "cpu_new(): cpu name = NULL?\n");
67 exit(1);
68 }
69
70 cpu_type_name = strdup(name);
71 if (cpu_type_name == NULL) {
72 fprintf(stderr, "cpu_new(): out of memory\n");
73 exit(1);
74 }
75
76 cpu = zeroed_alloc(sizeof(struct cpu));
77
78 cpu->memory_rw = NULL;
79 cpu->name = cpu_type_name;
80 cpu->mem = mem;
81 cpu->machine = machine;
82 cpu->cpu_id = cpu_id;
83 cpu->byte_order = EMUL_LITTLE_ENDIAN;
84 cpu->bootstrap_cpu_flag = 0;
85 cpu->running = 0;
86
87 cpu_create_or_reset_tc(cpu);
88
89 fp = first_cpu_family;
90
91 while (fp != NULL) {
92 if (fp->cpu_new != NULL) {
93 if (fp->cpu_new(cpu, mem, machine, cpu_id,
94 cpu_type_name)) {
95 /* Sanity check: */
96 if (cpu->memory_rw == NULL) {
97 fatal("\ncpu_new(): memory_rw == "
98 "NULL\n");
99 exit(1);
100 }
101 return cpu;
102 }
103 }
104
105 fp = fp->next;
106 }
107
108 fatal("\ncpu_new(): unknown cpu type '%s'\n", cpu_type_name);
109 exit(1);
110 }
111
112
113 /*
114 * cpu_show_full_statistics():
115 *
116 * Show detailed statistics on opcode usage on each cpu.
117 */
118 void cpu_show_full_statistics(struct machine *m)
119 {
120 if (m->cpu_family == NULL ||
121 m->cpu_family->show_full_statistics == NULL)
122 fatal("cpu_show_full_statistics(): NULL\n");
123 else
124 m->cpu_family->show_full_statistics(m);
125 }
126
127
128 /*
129 * cpu_tlbdump():
130 *
131 * Called from the debugger to dump the TLB in a readable format.
132 * x is the cpu number to dump, or -1 to dump all CPUs.
133 *
134 * If rawflag is nonzero, then the TLB contents isn't formated nicely,
135 * just dumped.
136 */
137 void cpu_tlbdump(struct machine *m, int x, int rawflag)
138 {
139 if (m->cpu_family == NULL || m->cpu_family->tlbdump == NULL)
140 fatal("cpu_tlbdump(): NULL\n");
141 else
142 m->cpu_family->tlbdump(m, x, rawflag);
143 }
144
145
146 /*
147 * cpu_register_match():
148 *
149 * Used by the debugger.
150 */
151 void cpu_register_match(struct machine *m, char *name,
152 int writeflag, uint64_t *valuep, int *match_register)
153 {
154 if (m->cpu_family == NULL || m->cpu_family->register_match == NULL)
155 fatal("cpu_register_match(): NULL\n");
156 else
157 m->cpu_family->register_match(m, name, writeflag,
158 valuep, match_register);
159 }
160
161
162 /*
163 * cpu_disassemble_instr():
164 *
165 * Convert an instruction word into human readable format, for instruction
166 * tracing.
167 */
168 int cpu_disassemble_instr(struct machine *m, struct cpu *cpu,
169 unsigned char *instr, int running, uint64_t addr, int bintrans)
170 {
171 if (m->cpu_family == NULL || m->cpu_family->disassemble_instr == NULL) {
172 fatal("cpu_disassemble_instr(): NULL\n");
173 return 0;
174 } else
175 return m->cpu_family->disassemble_instr(cpu, instr,
176 running, addr, bintrans);
177 }
178
179
180 /*
181 * cpu_register_dump():
182 *
183 * Dump cpu registers in a relatively readable format.
184 *
185 * gprs: set to non-zero to dump GPRs. (CPU dependent.)
186 * coprocs: set bit 0..x to dump registers in coproc 0..x. (CPU dependent.)
187 */
188 void cpu_register_dump(struct machine *m, struct cpu *cpu,
189 int gprs, int coprocs)
190 {
191 if (m->cpu_family == NULL || m->cpu_family->register_dump == NULL)
192 fatal("cpu_register_dump(): NULL\n");
193 else
194 m->cpu_family->register_dump(cpu, gprs, coprocs);
195 }
196
197
198 /*
199 * cpu_interrupt():
200 *
201 * Assert an interrupt.
202 * Return value is 1 if the interrupt was asserted, 0 otherwise.
203 */
204 int cpu_interrupt(struct cpu *cpu, uint64_t irq_nr)
205 {
206 if (cpu->machine->cpu_family == NULL ||
207 cpu->machine->cpu_family->interrupt == NULL) {
208 fatal("cpu_interrupt(): NULL\n");
209 return 0;
210 } else
211 return cpu->machine->cpu_family->interrupt(cpu, irq_nr);
212 }
213
214
215 /*
216 * cpu_interrupt_ack():
217 *
218 * Acknowledge an interrupt.
219 * Return value is 1 if the interrupt was deasserted, 0 otherwise.
220 */
221 int cpu_interrupt_ack(struct cpu *cpu, uint64_t irq_nr)
222 {
223 if (cpu->machine->cpu_family == NULL ||
224 cpu->machine->cpu_family->interrupt_ack == NULL) {
225 /* debug("cpu_interrupt_ack(): NULL\n"); */
226 return 0;
227 } else
228 return cpu->machine->cpu_family->interrupt_ack(cpu, irq_nr);
229 }
230
231
232 /*
233 * cpu_functioncall_trace():
234 *
235 * This function should be called if machine->show_trace_tree is enabled, and
236 * a function call is being made. f contains the address of the function.
237 */
238 void cpu_functioncall_trace(struct cpu *cpu, uint64_t f)
239 {
240 int i, n_args = -1;
241 char *symbol;
242 uint64_t offset;
243
244 if (cpu->machine->ncpus > 1)
245 fatal("cpu%i:\t", cpu->cpu_id);
246
247 cpu->trace_tree_depth ++;
248 if (cpu->trace_tree_depth > 100)
249 cpu->trace_tree_depth = 100;
250 for (i=0; i<cpu->trace_tree_depth; i++)
251 fatal(" ");
252
253 fatal("<");
254 symbol = get_symbol_name_and_n_args(&cpu->machine->symbol_context,
255 f, &offset, &n_args);
256 if (symbol != NULL)
257 fatal("%s", symbol);
258 else {
259 if (cpu->is_32bit)
260 fatal("0x%08x", (int)f);
261 else
262 fatal("0x%llx", (long long)f);
263 }
264 fatal("(");
265
266 if (cpu->machine->cpu_family->functioncall_trace != NULL)
267 cpu->machine->cpu_family->functioncall_trace(cpu, f, n_args);
268
269 fatal(")>\n");
270 }
271
272
273 /*
274 * cpu_functioncall_trace_return():
275 *
276 * This function should be called if machine->show_trace_tree is enabled, and
277 * a function is being returned from.
278 *
279 * TODO: Print return value? This could be implemented similar to the
280 * cpu->functioncall_trace function call above.
281 */
282 void cpu_functioncall_trace_return(struct cpu *cpu)
283 {
284 cpu->trace_tree_depth --;
285 if (cpu->trace_tree_depth < 0)
286 cpu->trace_tree_depth = 0;
287 }
288
289
290 /*
291 * cpu_create_or_reset_tc():
292 *
293 * Create the translation cache in memory (ie allocate memory for it), if
294 * necessary, and then reset it to an initial state.
295 */
296 void cpu_create_or_reset_tc(struct cpu *cpu)
297 {
298 size_t s = DYNTRANS_CACHE_SIZE + DYNTRANS_CACHE_MARGIN;
299
300 if (cpu->translation_cache == NULL) {
301 #ifdef DYNTRANS_BACKEND
302 if (dyntrans_backend_enable) {
303 cpu->translation_cache = (unsigned char *) mmap(NULL,
304 s, PROT_READ | PROT_WRITE | PROT_EXEC, MAP_ANON |
305 MAP_PRIVATE, -1, 0);
306 if (cpu->translation_cache == NULL) {
307 dyntrans_backend_enable = 0;
308 fatal("%\n% WARNING! Dyntrans backend disabled"
309 ", because mmap() failed.\n%\n");
310 }
311 }
312 #endif
313 if (cpu->translation_cache == NULL)
314 cpu->translation_cache = zeroed_alloc(s);
315 }
316
317 /* Create an empty table at the beginning of the translation cache: */
318 memset(cpu->translation_cache, 0, sizeof(uint32_t)
319 * N_BASE_TABLE_ENTRIES);
320
321 cpu->translation_cache_cur_ofs =
322 N_BASE_TABLE_ENTRIES * sizeof(uint32_t);
323
324 /*
325 * There might be other translation pointers that still point to
326 * within the translation_cache region. Let's invalidate those too:
327 */
328 if (cpu->invalidate_code_translation != NULL)
329 cpu->invalidate_code_translation(cpu, 0, INVALIDATE_ALL);
330 }
331
332
333 /*
334 * cpu_run():
335 *
336 * Run instructions on all CPUs in this machine, for a "medium duration"
337 * (or until all CPUs have halted).
338 *
339 * Return value is 1 if anything happened, 0 if all CPUs are stopped.
340 */
341 int cpu_run(struct emul *emul, struct machine *m)
342 {
343 if (m->cpu_family == NULL || m->cpu_family->run == NULL) {
344 fatal("cpu_run(): NULL\n");
345 return 0;
346 } else
347 return m->cpu_family->run(emul, m);
348 }
349
350
351 /*
352 * cpu_dumpinfo():
353 *
354 * Dumps info about a CPU using debug(). "cpu0: CPUNAME, running" (or similar)
355 * is outputed, and it is up to CPU dependent code to complete the line.
356 */
357 void cpu_dumpinfo(struct machine *m, struct cpu *cpu)
358 {
359 debug("cpu%i: %s, %s", cpu->cpu_id, cpu->name,
360 cpu->running? "running" : "stopped");
361
362 if (m->cpu_family == NULL || m->cpu_family->dumpinfo == NULL)
363 fatal("cpu_dumpinfo(): NULL\n");
364 else
365 m->cpu_family->dumpinfo(cpu);
366 }
367
368
369 /*
370 * cpu_list_available_types():
371 *
372 * Print a list of available CPU types for each cpu family.
373 */
374 void cpu_list_available_types(void)
375 {
376 struct cpu_family *fp;
377 int iadd = DEBUG_INDENTATION;
378
379 fp = first_cpu_family;
380
381 if (fp == NULL) {
382 debug("No CPUs defined!\n");
383 return;
384 }
385
386 while (fp != NULL) {
387 debug("%s:\n", fp->name);
388 debug_indentation(iadd);
389 if (fp->list_available_types != NULL)
390 fp->list_available_types();
391 else
392 debug("(internal error: list_available_types"
393 " = NULL)\n");
394 debug_indentation(-iadd);
395
396 fp = fp->next;
397 }
398 }
399
400
401 /*
402 * cpu_run_deinit():
403 *
404 * Shuts down all CPUs in a machine when ending a simulation. (This function
405 * should only need to be called once for each machine.)
406 */
407 void cpu_run_deinit(struct machine *machine)
408 {
409 int te;
410
411 /*
412 * Two last ticks of every hardware device. This will allow
413 * framebuffers to draw the last updates to the screen before
414 * halting.
415 */
416 for (te=0; te<machine->n_tick_entries; te++) {
417 machine->tick_func[te](machine->cpus[0],
418 machine->tick_extra[te]);
419 machine->tick_func[te](machine->cpus[0],
420 machine->tick_extra[te]);
421 }
422
423 debug("cpu_run_deinit(): All CPUs halted.\n");
424
425 if (machine->show_nr_of_instructions || !quiet_mode)
426 cpu_show_cycles(machine, 1);
427
428 if (show_opcode_statistics)
429 cpu_show_full_statistics(machine);
430
431 fflush(stdout);
432 }
433
434
435 /*
436 * cpu_show_cycles():
437 *
438 * If automatic adjustment of clock interrupts is turned on, then recalculate
439 * emulated_hz. Also, if show_nr_of_instructions is on, then print a
440 * line to stdout about how many instructions/cycles have been executed so
441 * far.
442 */
443 void cpu_show_cycles(struct machine *machine, int forced)
444 {
445 uint64_t offset, pc;
446 char *symbol;
447 int64_t mseconds, ninstrs, is, avg;
448 struct timeval tv;
449 int h, m, s, ms, d, instrs_per_cycle = 1;
450
451 static int64_t mseconds_last = 0;
452 static int64_t ninstrs_last = -1;
453
454 switch (machine->arch) {
455 case ARCH_MIPS:
456 instrs_per_cycle = machine->cpus[machine->bootstrap_cpu]->
457 cd.mips.cpu_type.instrs_per_cycle;
458 break;
459 }
460
461 pc = machine->cpus[machine->bootstrap_cpu]->pc;
462
463 gettimeofday(&tv, NULL);
464 mseconds = (tv.tv_sec - machine->starttime.tv_sec) * 1000
465 + (tv.tv_usec - machine->starttime.tv_usec) / 1000;
466
467 if (mseconds == 0)
468 mseconds = 1;
469
470 if (mseconds - mseconds_last == 0)
471 mseconds ++;
472
473 ninstrs = machine->ncycles_since_gettimeofday * instrs_per_cycle;
474
475 if (machine->automatic_clock_adjustment) {
476 static int first_adjustment = 1;
477
478 /* Current nr of cycles per second: */
479 int64_t cur_cycles_per_second = 1000 *
480 (ninstrs-ninstrs_last) / (mseconds-mseconds_last)
481 / instrs_per_cycle;
482
483 if (cur_cycles_per_second < 1000000)
484 cur_cycles_per_second = 1000000;
485
486 if (first_adjustment) {
487 machine->emulated_hz = cur_cycles_per_second;
488 first_adjustment = 0;
489 } else {
490 machine->emulated_hz = (15 * machine->emulated_hz +
491 cur_cycles_per_second) / 16;
492 }
493
494 /* debug("[ updating emulated_hz to %lli Hz ]\n",
495 (long long)machine->emulated_hz); */
496 }
497
498
499 /* RETURN here, unless show_nr_of_instructions (-N) is turned on: */
500 if (!machine->show_nr_of_instructions && !forced)
501 goto do_return;
502
503 printf("[ %lli instrs",
504 (long long)(machine->ncycles * instrs_per_cycle));
505
506 if (!machine->automatic_clock_adjustment) {
507 d = machine->emulated_hz / 1000;
508 if (d < 1)
509 d = 1;
510 ms = machine->ncycles / d;
511 h = ms / 3600000;
512 ms -= 3600000 * h;
513 m = ms / 60000;
514 ms -= 60000 * m;
515 s = ms / 1000;
516 ms -= 1000 * s;
517
518 printf(", emulated time = %02i:%02i:%02i.%03i; ", h, m, s, ms);
519 }
520
521 /* Instructions per second, and average so far: */
522 is = 1000 * (ninstrs-ninstrs_last) / (mseconds-mseconds_last);
523 avg = (long long)1000 * ninstrs / mseconds;
524 if (is < 0)
525 is = 0;
526 if (avg < 0)
527 avg = 0;
528 printf("; i/s=%lli avg=%lli", (long long)is, (long long)avg);
529
530 symbol = get_symbol_name(&machine->symbol_context, pc, &offset);
531
532 if (machine->ncpus == 1) {
533 if (machine->cpus[machine->bootstrap_cpu]->is_32bit)
534 printf("; pc=0x%08x", (int)pc);
535 else
536 printf("; pc=0x%016llx", (long long)pc);
537 }
538
539 if (symbol != NULL)
540 printf(" <%s>", symbol);
541 printf(" ]\n");
542
543 do_return:
544 ninstrs_last = ninstrs;
545 mseconds_last = mseconds;
546 }
547
548
549 /*
550 * cpu_run_init():
551 *
552 * Prepare to run instructions on all CPUs in this machine. (This function
553 * should only need to be called once for each machine.)
554 */
555 void cpu_run_init(struct machine *machine)
556 {
557 int ncpus = machine->ncpus;
558 int te;
559
560 machine->a_few_cycles = 1048576;
561 machine->ncycles_flush = 0;
562 machine->ncycles = 0;
563 machine->ncycles_show = 0;
564
565 /*
566 * Instead of doing { one cycle, check hardware ticks }, we
567 * can do { n cycles, check hardware ticks }, as long as
568 * n is at most as much as the lowest number of cycles/tick
569 * for any hardware device.
570 */
571 for (te=0; te<machine->n_tick_entries; te++) {
572 if (machine->ticks_reset_value[te] < machine->a_few_cycles)
573 machine->a_few_cycles = machine->ticks_reset_value[te];
574 }
575
576 machine->a_few_cycles >>= 1;
577 if (machine->a_few_cycles < 1)
578 machine->a_few_cycles = 1;
579
580 if (ncpus > 1 && machine->max_random_cycles_per_chunk == 0)
581 machine->a_few_cycles = 1;
582
583 /* debug("cpu_run_init(): a_few_cycles = %i\n",
584 machine->a_few_cycles); */
585
586 /* For performance measurement: */
587 gettimeofday(&machine->starttime, NULL);
588 machine->ncycles_since_gettimeofday = 0;
589 }
590
591
592 /*
593 * add_cpu_family():
594 *
595 * Allocates a cpu_family struct and calls an init function for the
596 * family to fill in reasonable data and pointers.
597 */
598 static void add_cpu_family(int (*family_init)(struct cpu_family *), int arch)
599 {
600 struct cpu_family *fp, *tmp;
601 int res;
602
603 fp = malloc(sizeof(struct cpu_family));
604 if (fp == NULL) {
605 fprintf(stderr, "add_cpu_family(): out of memory\n");
606 exit(1);
607 }
608 memset(fp, 0, sizeof(struct cpu_family));
609
610 /*
611 * family_init() returns 1 if the struct has been filled with
612 * valid data, 0 if suppor for the cpu family isn't compiled
613 * into the emulator.
614 */
615 res = family_init(fp);
616 if (!res) {
617 free(fp);
618 return;
619 }
620 fp->arch = arch;
621 fp->next = NULL;
622
623 /* Add last in family chain: */
624 tmp = first_cpu_family;
625 if (tmp == NULL) {
626 first_cpu_family = fp;
627 } else {
628 while (tmp->next != NULL)
629 tmp = tmp->next;
630 tmp->next = fp;
631 }
632 }
633
634
635 /*
636 * cpu_family_ptr_by_number():
637 *
638 * Returns a pointer to a CPU family based on the ARCH_* integers.
639 */
640 struct cpu_family *cpu_family_ptr_by_number(int arch)
641 {
642 struct cpu_family *fp;
643 fp = first_cpu_family;
644
645 /* YUCK! This is too hardcoded! TODO */
646
647 while (fp != NULL) {
648 if (arch == fp->arch)
649 return fp;
650 fp = fp->next;
651 }
652
653 return NULL;
654 }
655
656
657 #ifdef DYNTRANS_BACKEND
658 /*
659 * cpu_dtb_add_fixup():
660 *
661 * Add a fixup entry to a currently ongoing dyntrans backend translation.
662 */
663 void cpu_dtb_add_fixup(struct cpu *cpu, int type, void *addr, size_t data)
664 {
665 struct dtb_fixup *fixup = malloc(sizeof (struct dtb_fixup));
666 if (fixup == NULL) {
667 fprintf(stderr, "out of memory\n"),
668 exit(1);
669 }
670
671 /* memset(fixup, 0, sizeof(struct dtb_fixup)); */
672
673 fixup->next = cpu->translation_context.fixups;
674 cpu->translation_context.fixups = fixup;
675
676 fixup->type = type;
677 fixup->addr = addr;
678 fixup->data = data;
679
680 /* printf("{ fixup added: host addr %p, data=%p }\n", addr,
681 (void *)data); */
682 }
683
684
685 /*
686 * cpu_dtb_do_fixups():
687 *
688 * This function should be called when a chunk of code has been translated,
689 * and post-fixup is to be applied (i.e. add data which for some reason was
690 * not included in the generated code).
691 *
692 * If no fixup is necessary for a specific host platform, then it still needs
693 * an empty do_fixups routine here (just set done = 1).
694 */
695 void cpu_dtb_do_fixups(struct cpu *cpu)
696 {
697 for (;;) {
698 int done = 0;
699 size_t omit_addr;
700
701 struct dtb_fixup *fixup = cpu->translation_context.fixups;
702 if (fixup == NULL)
703 break;
704
705 cpu->translation_context.fixups = fixup->next;
706
707 #ifdef DYNTRANS_BACKEND_ALPHA
708 /* Add the data at the end of the new translation: */
709 /*printf("%p %p\n", fixup->addr, fixup->data);*/
710 omit_addr = (size_t)cpu->translation_context.p -
711 (size_t)cpu->translation_context.translation_buffer;
712 /*printf("omit_addr = %016llx\n", (long long)omit_addr);*/
713 omit_addr = ((omit_addr - 1) | (sizeof(uint64_t) - 1)) + 1;
714 /*printf("omit_addr = %016llx\n", (long long)omit_addr);*/
715 {
716 uint64_t *x = (void *)(omit_addr + (size_t)cpu->
717 translation_context.translation_buffer);
718 uint32_t *fixup_instr = (void *)fixup->addr;
719 size_t ofs = omit_addr;
720 if (ofs > 0x7fff) {
721 fatal("Alpha fixup > 0x7fff!\n");
722 exit(1);
723 }
724 *x = fixup->data;
725 /*printf("orig instr = 0x%08x\n", *fixup_instr);*/
726 (*fixup_instr) &= ~0xffff;
727 (*fixup_instr) |= ofs;
728 /*printf("new instr = 0x%08x\n", *fixup_instr);*/
729 }
730 omit_addr += sizeof(uint64_t);
731 cpu->translation_context.p = (void *)
732 ((size_t)cpu->translation_context.translation_buffer
733 + omit_addr);
734 done = 1;
735 #endif /* DYNTRANS_BACKEND_ALPHA */
736
737 if (!done)
738 fatal("!!! cpu_dtb_do_fixups() not implemented yet"
739 " for this host architecture!\n");
740 }
741 }
742
743 #endif /* DYNTRANS_BACKEND */
744
745
746 /*
747 * cpu_init():
748 *
749 * Should be called before any other cpu_*() function.
750 */
751 void cpu_init(void)
752 {
753 /* Note: These are registered in alphabetic order. */
754
755 #ifdef ENABLE_ALPHA
756 add_cpu_family(alpha_cpu_family_init, ARCH_ALPHA);
757 #endif
758
759 #ifdef ENABLE_ARM
760 add_cpu_family(arm_cpu_family_init, ARCH_ARM);
761 #endif
762
763 #ifdef ENABLE_AVR
764 add_cpu_family(avr_cpu_family_init, ARCH_AVR);
765 #endif
766
767 #ifdef ENABLE_HPPA
768 add_cpu_family(hppa_cpu_family_init, ARCH_HPPA);
769 #endif
770
771 #ifdef ENABLE_I960
772 add_cpu_family(i960_cpu_family_init, ARCH_I960);
773 #endif
774
775 #ifdef ENABLE_IA64
776 add_cpu_family(ia64_cpu_family_init, ARCH_IA64);
777 #endif
778
779 #ifdef ENABLE_M68K
780 add_cpu_family(m68k_cpu_family_init, ARCH_M68K);
781 #endif
782
783 #ifdef ENABLE_MIPS
784 add_cpu_family(mips_cpu_family_init, ARCH_MIPS);
785 #endif
786
787 #ifdef ENABLE_PPC
788 add_cpu_family(ppc_cpu_family_init, ARCH_PPC);
789 #endif
790
791 #ifdef ENABLE_SH
792 add_cpu_family(sh_cpu_family_init, ARCH_SH);
793 #endif
794
795 #ifdef ENABLE_SPARC
796 add_cpu_family(sparc_cpu_family_init, ARCH_SPARC);
797 #endif
798
799 #ifdef ENABLE_X86
800 add_cpu_family(x86_cpu_family_init, ARCH_X86);
801 #endif
802 }
803

  ViewVC Help
Powered by ViewVC 1.1.26