/[gxemul]/trunk/doc/technical.html
This is repository of my old source code which isn't updated any more. Go to git.rot13.org for current projects!
ViewVC logotype

Diff of /trunk/doc/technical.html

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 4 by dpavlin, Mon Oct 8 16:18:00 2007 UTC revision 20 by dpavlin, Mon Oct 8 16:19:23 2007 UTC
# Line 1  Line 1 
1  <html>  <html><head><title>Gavare's eXperimental Emulator:&nbsp;&nbsp;&nbsp;Technical details</title>
2  <head><title>GXemul documentation: Technical details</title>  <meta name="robots" content="noarchive,nofollow,noindex"></head>
 </head>  
3  <body bgcolor="#f8f8f8" text="#000000" link="#4040f0" vlink="#404040" alink="#ff0000">  <body bgcolor="#f8f8f8" text="#000000" link="#4040f0" vlink="#404040" alink="#ff0000">
4  <table border=0 width=100% bgcolor="#d0d0d0"><tr>  <table border=0 width=100% bgcolor="#d0d0d0"><tr>
5  <td width=100% align=center valign=center><table border=0 width=100%><tr>  <td width=100% align=center valign=center><table border=0 width=100%><tr>
6  <td align="left" valign=center bgcolor="#d0efff"><font color="#6060e0" size="6">  <td align="left" valign=center bgcolor="#d0efff"><font color="#6060e0" size="6">
7  <b>GXemul documentation:</b></font>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;  <b>Gavare's eXperimental Emulator:&nbsp;&nbsp;&nbsp;</b></font>
8  <font color="#000000" size="6"><b>Technical details</b>  <font color="#000000" size="6"><b>Technical details</b>
9  </font></td></tr></table></td></tr></table><p>  </font></td></tr></table></td></tr></table><p>
 <!-- The first 10 lines are cut away by the homepage updating script.  -->  
   
10    
11  <!--  <!--
12    
13  $Id: technical.html,v 1.49 2005/04/16 00:29:45 debug Exp $  $Id: technical.html,v 1.67 2005/11/24 12:32:10 debug Exp $
14    
15  Copyright (C) 2004-2005  Anders Gavare.  All rights reserved.  Copyright (C) 2004-2005  Anders Gavare.  All rights reserved.
16    
# Line 43  SUCH DAMAGE. Line 40  SUCH DAMAGE.
40  -->  -->
41    
42    
43    
44  <a href="./">Back to the index</a>  <a href="./">Back to the index</a>
45    
46  <p><br>  <p><br>
47  <h2>Technical details</h2>  <h2>Technical details</h2>
48    
49  <p>  <p>This page describes some of the internals of GXemul.
 This page describes some of the internals of GXemul.  
50    
51  <p>  <p>
52  <ul>  <ul>
53    <li><a href="#overview">Overview</a>    <li><a href="#speed">Speed and emulation modes</a>
   <li><a href="#speed">Speed</a>  
54    <li><a href="#net">Networking</a>    <li><a href="#net">Networking</a>
55    <li><a href="#devices">Emulation of hardware devices</a>    <li><a href="#devices">Emulation of hardware devices</a>
   <li><a href="#regtest">Regression tests</a>  
56  </ul>  </ul>
57    
58    
59    
60    
 <p><br>  
 <a name="overview"></a>  
 <h3>Overview</h3>  
   
 In simple terms, GXemul is just a simple fetch-and-execute  
 loop; an instruction is fetched from memory, and executed.  
   
 <p>  
 In reality, a lot of things need to be handled. Before each instruction is  
 executed, the emulator checks to see if any interrupts are asserted which  
 are not masked away. If so, then an INT exception is generated. Exceptions  
 cause the program counter to be set to a specific value, and some of the  
 system coprocessor's registers to be set to values signifying what kind of  
 exception it was (an interrupt exception in this case).  
   
 <p>  
 Reading instructions from memory is done through a TLB, a translation  
 lookaside buffer. The TLB on MIPS is software controlled, which means that  
 the program running inside the emulator (for example an operating system  
 kernel) has to take care of manually updating the TLB. Some memory  
 addresses are translated into physical addresses directly, some are  
 translated into valid physical addresses via the TLB, and some memory  
 references are not valid. Invalid memory references cause exceptions.  
   
 <p>  
 After an instruction has been read from memory, the emulator checks which  
 opcode it contains and executes the instruction. Executing an instruction  
 usually involves reading some register and writing some register, or perhaps a  
 load from memory (or a store to memory). The program counter is increased  
 for every instruction.  
   
 <p>  
 Some memory references point to physical addresses which are not in the  
 normal RAM address space. They may point to hardware devices. If that is  
 the case, then loads and stores are converted into calls to a device  
 access function. The device access function is then responsible for  
 handling these reads and writes.  For example, a graphical framebuffer  
 device may put a pixel on the screen when a value is written to it, or a  
 serial controller device may output a character to stdout when written to.  
   
   
61    
62    
63  <p><br>  <p><br>
64  <a name="speed"></a>  <a name="speed"></a>
65  <h3>Speed</h3>  <h3>Speed and emulation modes</h3>
   
 There are two modes in which the emulator can run, <b>a</b>) a straight forward  
 loop which fetches one instruction from emulated RAM and executes it  
 (described in the previous section), and <b>b</b>)  
 using dynamic binary translation.  
66    
67  <p>  So, how fast is GXemul? There is no short answer to this. There is
68  Mode <b>a</b> is very slow. On a 2.8 GHz Intel Xeon host the resulting  especially no answer to the question <b>What is the slowdown factor?</b>,
69  emulated machine is rougly equal to a 7 MHz R3000 (or a 3.5 MHz R4000).  because the host architecture and emulated architecture can usually not be
70  The actual performance varies a lot, maybe between 5 and 10 million  compared just like that.
71  instructions per second, depending on workload.  
72    <p>Performance depends on several factors, including (but not limited to)  
73  <p>  host architecture, host clock speed, which compiler and compiler flags
74  Mode <b>b</b> ("bintrans") is still to be considered experimental, but  were used to build the emulator, what the workload is, and so on. For
75  gives higher performance than mode <b>a</b>. It translates MIPS machine  example, if an emulated operating system tries to read a block from disk,
76  code into machine code that can be executed on the host machine  from its point of view the read was instantaneous (no waiting). So 1 MIPS
77  on-the-fly. The translation itself obviously takes some time, but this is  in an emulated OS might have taken more than one million instructions on a
78  usually made up for by the fact that the translated code chunks are  real machine.
79  executed multiple times.  
80  To run the emulator with binary translation enabled, just add <b>-b</b>  <p>Also, if the emulator says it has executed 1 million instructions, and
81  to the command line.  the CPU family in question was capable of scalar execution (i.e. one cycle
82    per instruction), it might still have taken more than 1 million cycles on
83  <p>  a real machine because of cache misses and similar micro-architectural
84  Only small pieces of MIPS machine code are translated, usually the size of  penalties that are not simulated by GXemul.
85  a function, or less. There is no "intermediate representation" code, so  
86  all translations are done directly from MIPS to host machine code.  <p>Because of these issues, it is in my opinion best to measure
87    performance as the actual (real-world) time it takes to perform a task
88  <p>  with the emulator. Typical examples would be "How long does it take to
89  The default bintrans cache size is 16 MB, but you can change this by adding  install NetBSD?", or "How long does it take to compile XYZ inside NetBSD
90  -DDEFAULT_BINTRANS_SIZE_IN_MB=<i>xx</i> to your CFLAGS environment variable  in the emulator?".
91  before running the configure script, or by using the bintrans_size()  
92  configuration file option when running the emulator.  <p>So, how fast is it? :-)&nbsp;&nbsp;&nbsp;Answer: it varies.
93    
94  <p>  <p>The emulation technique used varies depending on which processor type
95  By default, an emulated OS running under DECstation emulation which listens to  is being emulated. (One of my main goals with GXemul is to experiment with
96  interrupts from the mc146818 clock will get interrupts that are close to the  different kinds of emulation, so these might change in the future.)
 host's clock. That is, if the emulated OS says it wants 100 interrupts per  
 second, it will get approximately 100 interrupts per real second.  
97    
98  <p>  <ul>
99  There is however a -I option, which sets the number of emulated cycles per    <li><b>MIPS:</b><br>
100  seconds to a fixed value. Let's say you wish to make the emulated OS think it          There are two emulation modes. The most important one is an
101  is running on a 40 MHz DECstation, and not a 7 MHz one, then you can add          implementation of a <i>dynamic binary translator</i>.
102  -I 40000000 to the command line. This will not make the emulation faster, of          (Compared to real binary translators, though, GXemul's bintrans
103  course. It might even make it seem slower; for example, if NetBSD/pmax waits          subsystem is very simple and does not perform very well.)
104  2 seconds for SCSI devices to settle during bootup, those 2 seconds will take          This mode can be used on Alpha and i386 host. The other emulation
105  2*40000000 cycles (which will take more time than 2*7000000).          mode is simple interpretation, where an instruction is read from
106            emulated memory, and interpreted one-at-a-time. (Slow, but it
107            works. It can be forcefully used by using the <tt>-B</tt> command
108            line option.)
109      <p>
110      <li><b>All other modes:</b><br>
111            These use a kind of dynamic translation system. (This system does
112            not use host-specific backends, so it is not "recompilation" or
113            anything like that.) Speed is slower than real binary translation,
114            but faster than traditional interpretation, and with some tricks
115            it will hopefully still give reasonable speed. The ARM and PowerPC
116            emulation modes uses this kind of translation.
117    </ul>
118    
 <p>  
 The -I option is also necessary if you want to run deterministic experiments,  
 if a mc146818 device is present.  
119    
 <p>  
 Some emulators make claims such as "x times slowdown," but in the case of  
 GXemul, the host is often not a MIPS-based machine, and hence comparing  
 one MIPS instruction to a host instruction doesn't work. Performance depends on  
 a lot of factors, including (but not limited to) host architecture, host speed,  
 which compiler and compiler flags were used to build GXemul, what the  
 workload is, and so on. For example, if an emulated operating system tries  
 to read a block from disk, from its point of view the read was instantaneous  
 (no waiting). So 1 MIPS in an emulated OS might have taken more than one  
 million instructions on a real machine.  Because of this, imho it is best  
 to measure performance as the actual (real-world) time it takes to perform  
 a task with the emulator.  
120    
121    
122    
# Line 181  a task with the emulator. Line 125  a task with the emulator.
125  <a name="net"></a>  <a name="net"></a>
126  <h3>Networking</h3>  <h3>Networking</h3>
127    
128  Running an entire operating system under emulation is very interesting in  <font color="#ff0000">NOTE/TODO: This section is very old and a bit
129  itself, but for several reasons, running a modern OS without access to  out of date.</font>
130  TCP/IP networking is a bit akward. Hence, I feel the need to implement TCP/IP  
131  (networking) support in the emulator.  <p>Running an entire operating system under emulation is very interesting
132    in itself, but for several reasons, running a modern OS without access to
133    TCP/IP networking is a bit akward. Hence, I feel the need to implement
134    TCP/IP (networking) support in the emulator.
135    
136  <p>  <p>
137  As far as I have understood it, there seems to be two different ways to go:  As far as I have understood it, there seems to be two different ways to go:
# Line 205  As far as I have understood it, there se Line 152  As far as I have understood it, there se
152                  connect from the emulated OS to the OS running on the                  connect from the emulated OS to the OS running on the
153                  host, as packets sent out on the host's NIC are not                  host, as packets sent out on the host's NIC are not
154                  received by itself. (?)                  received by itself. (?)
155              <li>All specific networking protocols will be handled by the
156                    physical network.
157          </ul>          </ul>
158    <p>    <p>
159    or    or
# Line 233  As far as I have understood it, there se Line 182  As far as I have understood it, there se
182          </ul>          </ul>
183  </ol>  </ol>
184    
185  Other emulators that I have heard of seem to use the first one, if they  <p>
186  support networking.  Some emulators/simulators use the first approach, while others use the
187    second. I think that SIMH and QEMU are examples of emulators using the
188    first and second approach, respectively.
189    
190  <p>  <p>
191  Since I have choosen the second kind of implementation, I have to write  Since I have choosen the second kind of implementation, I have to write
# Line 249  emulation (-E dec -e 3max): Line 200  emulation (-E dec -e 3max):
200          and converted to ARP responses. (This is used by the emulated OS          and converted to ARP responses. (This is used by the emulated OS
201          to find out the MAC address of the gateway.)          to find out the MAC address of the gateway.)
202    <li>ICMP echo requests (that is the kind of packet produced by the    <li>ICMP echo requests (that is the kind of packet produced by the
203          <b>ping</b> program) are interpreted and converted to ICMP echo          <b><tt>ping</tt></b> program) are interpreted and converted to ICMP echo
204          replies, <i>regardless of the IP address</i>. This means that          replies, <i>regardless of the IP address</i>. This means that
205          running ping from within the emulated OS will <i>always</i>          running ping from within the emulated OS will <i>always</i>
206          receive a response. The ping packets never leave the emulated          receive a response. The ping packets never leave the emulated
# Line 263  emulation (-E dec -e 3max): Line 214  emulation (-E dec -e 3max):
214          packets are handled (but more state is kept for each connection).          packets are handled (but more state is kept for each connection).
215          <font color="#ff0000">NOTE: Much of the TCP handling code is very          <font color="#ff0000">NOTE: Much of the TCP handling code is very
216          ugly and hardcoded.</font>          ugly and hardcoded.</font>
217    <!--
218    <li>RARP is not implemented yet. (I haven't needed it so far.)    <li>RARP is not implemented yet. (I haven't needed it so far.)
219    -->
220  </ul>  </ul>
221    
222    <p>
223  The gateway machine, which is the only "other" machine that the emulated  The gateway machine, which is the only "other" machine that the emulated
224  OS sees on its emulated network, works as a NAT-style firewall/gateway. It  OS sees on its emulated network, works as a NAT-style firewall/gateway. It
225  has a fixed IPv4 address of 10.0.0.254. An OS running in the emulator  usually has a fixed IPv4 address of <tt>10.0.0.254</tt>. An OS running in
226  can thus have any 10.x.x.x address; a typical choice would be 10.0.0.1.  the emulator would usually have an address of the form <tt>10.x.x.x</tt>;
227    a typical choice would be <tt>10.0.0.1</tt>.
228    
229  <p>  <p>
230  Inside emulated NetBSD or OpenBSD, running the following commands should  Inside emulated NetBSD/pmax or OpenBSD/pmax, running the following
231  configure the emulated NIC:  commands should configure the emulated NIC:
232  <pre>  <pre>
233          # <b>ifconfig le0 10.0.0.1</b>          # <b>ifconfig le0 10.0.0.1</b>
234          # <b>route add default 10.0.0.254</b>          # <b>route add default 10.0.0.254</b>
235          add net default: gateway 10.0.0.254          add net default: gateway 10.0.0.254
236  </pre>  </pre>
237    
238    <p>
239  If you want nameserver lookups to work, you need a valid /etc/resolv.conf  If you want nameserver lookups to work, you need a valid /etc/resolv.conf
240  as well:  as well:
241  <pre>  <pre>
242          # <b>echo nameserver 129.16.1.3 > /etc/resolv.conf</b>          # <b>echo nameserver 129.16.1.3 > /etc/resolv.conf</b>
243  </pre>  </pre>
244  (But replace 129.16.1.3 with the actual real-world IP address of your  (But replace <tt>129.16.1.3</tt> with the actual real-world IP address of
245  nearest nameserver.)  your nearest nameserver.)
246    
247  <p>  <p>
248  Now, host lookups should work:  Now, host lookups should work:
249  <pre>  <pre>
# Line 309  Now, host lookups should work: Line 266  Now, host lookups should work:
266          uucp-gw-2.pa.dec.com    172799 IN       A       204.123.2.19          uucp-gw-2.pa.dec.com    172799 IN       A       204.123.2.19
267  </pre>  </pre>
268    
269  To transfer files via UDP, you can use the tftp program.  <p>
270    At this point, UDP and TCP should (mostly) work.
 <pre>  
         # <b>tftp 12.34.56.78</b>  
         tftp> <b>get filename</b>  
         Received XXXXXX bytes in X.X seconds  
         tftp> <b>quit</b>  
         #  
 </pre>  
   
 or, to do it non-interactively (with ugly output):  
   
 <pre>  
         # <b>echo get filename | tftp 12.34.56.78</b>  
         tftp> Received XXXXXX bytes in X.X seconds  
         tftp> #  
 </pre>  
271    
272  This, of course, requires that you have put the file <i>filename</i> in  <p>
273  the root directory of the tftp server (12.34.56.78).  Here is an example of how to configure a server machine and an emulated
274    client machine for sharing files via NFS:
275    
276  <p>  <p>
277  It is also possible to run NFS via UDP. This is very useful if you want to  (This is very useful if you want to share entire directory trees
278  share entire directory trees between the emulated environment and another  between the emulated environment and another machine. These instruction
279  machine. These instruction will work for FreeBSD, if you are running  will work for FreeBSD, if you are running something else, use your
280  something else, use your imagination to modify them:  imagination to modify them.)
281    
282    <p>
283  <ul>  <ul>
284    <li>On the server, add a line to your /etc/exports file, exporting    <li>On the server, add a line to your /etc/exports file, exporting
285          the files you wish to use in the emulator:<pre>          the files you wish to use in the emulator:<pre>
# Line 374  a CDROM ISO image. You can use a read-wr Line 318  a CDROM ISO image. You can use a read-wr
318  files in both directions, but then you should be aware of the  files in both directions, but then you should be aware of the
319  fragmentation issue mentioned above.  fragmentation issue mentioned above.
320    
321  <p>  
322  TCP is implemented to some extent, but should not be considered to be  
 stable yet. It is enough to let NetBSD/pmax and OpenBSD/pmax install via  
 ftp, though.  
323    
324    
325    
# Line 386  ftp, though. Line 328  ftp, though.
328  <a name="devices"></a>  <a name="devices"></a>
329  <h3>Emulation of hardware devices</h3>  <h3>Emulation of hardware devices</h3>
330    
331  Each file in the device/ directory is responsible for one hardware device.  Each file called <tt>dev_*.c</tt> in the <tt>src/device/</tt> directory is
332  These are used from src/machine.c, when initializing which hardware a  responsible for one hardware device. These are used from
333  particular machine model will be using, or when adding devices to a  <tt>src/machine.c</tt>, when initializing which hardware a particular
334  machine using the <b>device()</b> command in configuration files.  machine model will be using, or when adding devices to a machine using the
335    <tt>device()</tt> command in configuration files.
 <p>  
 <font color="#ff0000">NOTE: 2005-02-26: I'm currently rewriting the  
 device registry subsystem.</font>  
336    
337  <p>  <p>(I'll be using the name "<tt>foo</tt>" as the name of the device in all
338  (I'll be using the name 'foo' as the name of the device in all these  these examples.  This is pseudo code, it might need some modification to
 examples.  This is pseudo code, it might need some modification to  
339  actually compile and run.)  actually compile and run.)
340    
341  <p>  <p>Each device should have the following:
 Each device should have the following:  
342    
343  <p>  <p>
344  <ul>  <ul>
345    <li>A devinit function in dev_foo.c. It would typically look    <li>A <tt>devinit</tt> function in <tt>src/devices/dev_foo.c</tt>. It
346          something like this:          would typically look something like this:
347  <pre>  <pre>
348          /*          /*
349           *  devinit_foo():           *  devinit_foo():
# Line 431  Each device should have the following: Line 368  Each device should have the following:
368                    
369                  memory_device_register(devinit->machine->memory, devinit->name,                  memory_device_register(devinit->machine->memory, devinit->name,
370                      devinit->addr, DEV_FOO_LENGTH,                      devinit->addr, DEV_FOO_LENGTH,
371                      dev_foo_access, (void *)d, MEM_DEFAULT, NULL);                      dev_foo_access, (void *)d, DM_DEFAULT, NULL);
372                    
373                  /*  This should only be here if the device                  /*  This should only be here if the device
374                      has a tick function:  */                      has a tick function:  */
# Line 443  Each device should have the following: Line 380  Each device should have the following:
380          }                }      
381  </pre><br>  </pre><br>
382    
383    <li>At the top of dev_foo.c, the foo_data struct should be defined.    <li>At the top of <tt>dev_foo.c</tt>, the <tt>foo_data</tt> struct
384            should be defined.
385  <pre>  <pre>
386          struct foo_data {          struct foo_data {
387                  int     irq_nr;                  int     irq_nr;
388                  /*  ...  */                  /*  ...  */
389          }          }
390  </pre><br>  </pre><br>
391            (There is an exception to this rule; ugly hacks which allow
392    <li>If foo has a tick function (that is, something that needs to be          code in <tt>src/machine.c</tt> to use some structures makes it
393          run at regular intervals) then FOO_TICKSHIFT and a tick function          necessary to place the <tt>struct foo_data</tt> in
394          need to be defined as well:          <tt>src/include/devices.h</tt> instead of in <tt>dev_foo.c</tt>
395            itself. This is useful for example for interrupt controllers.)
396      <p>
397      <li>If <tt>foo</tt> has a tick function (that is, something that needs to be
398            run at regular intervals) then <tt>FOO_TICKSHIFT</tt> and a tick
399            function need to be defined as well:
400  <pre>  <pre>
401          #define FOO_TICKSHIFT           10          #define FOO_TICKSHIFT           14
402    
403          void dev_foo_tick(struct cpu *cpu, void *extra)          void dev_foo_tick(struct cpu *cpu, void *extra)
404          {          {
# Line 468  Each device should have the following: Line 411  Each device should have the following:
411          }          }
412  </pre><br>  </pre><br>
413    
414      <li>Does this device belong to a standard bus?
415            <ul>
416              <li>If this device should be detectable as a PCI device, then
417                    glue code should be added to
418                    <tt>src/devices/bus_pci.c</tt>.
419              <li>If this is a legacy ISA device which should be usable by
420                    any machine which has an ISA bus, then the device should
421                    be added to <tt>src/devices/bus_isa.c</tt>.
422            </ul>
423      <p>
424    <li>And last but not least, the device should have an access function.    <li>And last but not least, the device should have an access function.
425          The access function is called whenever there is a load or store          The access function is called whenever there is a load or store
426          to an address which is in the device' memory mapped region.          to an address which is in the device' memory mapped region.
# Line 498  Each device should have the following: Line 451  Each device should have the following:
451  </ul>  </ul>
452    
453  <p>  <p>
454  The return value of the access function has until 20040702 been a  The return value of the access function has until 2004-07-02 been a
455  true/false value; 1 for success, or 0 for device access failure. A device  true/false value; 1 for success, or 0 for device access failure. A device
456  access failure (on MIPS) will result in a DBE exception.  access failure (on MIPS) will result in a DBE exception.
457    
# Line 512  means that the access failed, and took 5 Line 465  means that the access failed, and took 5
465    
466  <p>  <p>
467  To be compatible with pre-20040702 devices, a return value of 0 is treated  To be compatible with pre-20040702 devices, a return value of 0 is treated
468  by the caller (in src/memory.c) as a value of -1.  by the caller (in <tt>src/memory_rw.c</tt>) as a value of -1.
   
469    
470    
471    
472    
 <p><br>  
 <a name="regtest"></a>  
 <h3>Regression tests</h3>  
   
 In order to make sure that the emulator actually works like it is supposed  
 to, it must be tested. For this purpose, there is a simple regression  
 testing framework in the <b>tests/</b> directory.  
   
 <p>  
 <i>NOTE:  The regression testing framework is basically just a skeleton so far.  
 Regression tests are very good to have. However, the fact that complete  
 operating systems can run in the emulator indicate that the emulation is  
 probably not too incorrect. This makes it less of a priority to write  
 regression tests.</i>  
   
 <p>  
 To run all the regression tests, type <b>make regtest</b>. Each assembly  
 language file matching the pattern <b>test_*.S</b> will be compiled and  
 linked into a 64-bit MIPS ELF (using a gcc cross compiler), and run in the  
 emulator. If everything goes well, you should see something like this:  
   
 <pre>  
         $ make regtest  
         cd tests; make run_tests; cd ..  
         gcc33 -Wall -fomit-frame-pointer -fmove-all-movables -fpeephole -O2  
                 -mcpu=ev5 -I/usr/X11R6/include -lm -L/usr/X11R6/lib -lX11  do_tests.c  
                 -o do_tests  
         do_tests.c: In function `main':  
         do_tests.c:173: warning: unused variable `s'  
         /var/tmp//ccFOupvD.o: In function `do_tests':  
         /var/tmp//ccFOupvD.o(.text+0x3a8): warning: tmpnam() possibly used  
                 unsafely; consider using mkstemp()  
         mips64-unknown-elf-gcc -g -O3 -fno-builtin -fschedule-insns -mips64  
                 -mabi=64 test_common.c -c -o test_common.o  
         ./do_tests "mips64-unknown-elf-gcc -g -O3 -fno-builtin -fschedule-insns  
                 -mips64 -mabi=64" "mips64-unknown-elf-as -mabi=64 -mips64"  
                 "mips64-unknown-elf-ld -Ttext 0xa800000000030000 -e main  
                 --oformat=elf64-bigmips" "../gxemul"  
   
         Starting tests:  
           test_addu.S (-a)  
           test_addu.S (-a -b)  
           test_clo_clz.S (-a)  
           test_clo_clz.S (-a -b)  
           ..  
           test_unaligned.S (-a)  
           test_unaligned.S (-a -b)  
   
         Done. (12 tests done)  
             PASS:     12  
             FAIL:      0  
   
         ----------------  
   
           All tests OK  
   
         ----------------  
 </pre>  
   
 <p>  
 Each test writes output to stdout, and there is a <b>test_*.good</b> for  
 each <b>.S</b> file which contains the wanted output. If the actual output  
 matches the <b>.good</b> file, then the test passes, otherwise it fails.  
   
 <p>  
 Read <b>tests/README</b> for more information.  
   
   
473    
474    
475  </body>  </body>

Legend:
Removed from v.4  
changed lines
  Added in v.20

  ViewVC Help
Powered by ViewVC 1.1.26